期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of bubbly flow on bending moment acting on the shaft of a gas sparged vessel stirred by a Rushton turbine 被引量:3
1
作者 石代嗯 蔡子琦 +1 位作者 Archie Eaglesham 高正明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第3期482-489,共8页
The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equi... The bending moment acting on the overhung shaft of a gas-sparged vessel stirred by a Rushton turbine,as one of the results of fluid and structure interactions in stirred vessels,was measured using a moment sensor equipped with digital telemetry.An analysis of the shaft bending moment amplitude shows that the amplitude distribution of the bending moment,which indicates the elasticity nature of shaft material against bending deformation,follows the Weibull distribution.The trends of amplitude mean,standard deviation and peak deviation characteristics manifest an "S" shape versus gas flow.The "S" trend of the relative mean bending moment over gas flow rate,depending on the flow regime in gas-liquid stirred vessels,resulted from the competition among the nonuniformity of bubbly flow around the impeller,the formation of gas cavities behind the blades,and the gas direct impact on the impeller when gas is introduced.A further analysis of the bending moment power spectral density shows that the rather low frequency and speed frequency are evident.The low-frequency contribution to bending moment fluctuation peaks in the complete dispersion regime. 展开更多
关键词 Bending moment Bubbly flow stirred vessel Fluid structure interaction Amplitude distribution
下载PDF
Numerical investigations of the effects of blade shape on the flow characteristics in a stirred dead-end membrane bioreactor 被引量:1
2
作者 Xu-qu Hu Xing-yi Wang +2 位作者 Xiu-cheng Lei Xiang Qiu Lin-feng Chen 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第6期1143-1152,共10页
Numerical simulations of turbulent flows in a stirred dead-end membrane bioreactor are performed by using the RNG k-? model based on the finite volume method with the software Fluent. Comparisons of numerical and expe... Numerical simulations of turbulent flows in a stirred dead-end membrane bioreactor are performed by using the RNG k-? model based on the finite volume method with the software Fluent. Comparisons of numerical and experimental results confirm the reliability and the feasibility of the constructed model. The flow structures such as the wake flows and the circulation loops in the stirred flows are well simulated. An increase of stirring speed is proposed to minimize the low velocity region. The single vane stirrer is found to be beneficial for biological separations. Results suggest that the increase of the vane number can enhance the mixing effect in the flow domains. However, a circular disk stirrer goes against the formation of vertical circulations. The six-vane stirrer is found to be able to provide a uniform distribution of the high shear stress. 展开更多
关键词 Turbulent flow stirred flows membrane fouling membrane bioreactor
原文传递
Improving weld formability by a novel dual-rotation bobbin tool friction stir welding 被引量:11
3
作者 F.F.Wang W.Y.Li +2 位作者 J.Shen Q.Wen J.F.dos Santos 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期135-139,共5页
A novel dual-rotation bobbin tool friction stir welding (DBT-FSW) was developed, in which the upper shoulder (US) and lower shoulder (LS) have different rotational speeds. This process was tried to weld 3.2 mm t... A novel dual-rotation bobbin tool friction stir welding (DBT-FSW) was developed, in which the upper shoulder (US) and lower shoulder (LS) have different rotational speeds. This process was tried to weld 3.2 mm thick alunlinum-lithium alloy sheets. The metallographic analysis and torque measurement were carried out to characterize the weld formabiliW. Experimental results show that compared to conven- tional bobbin tool friction stir welding, the DBT-FSW has an excellent process stability, and can produce the defect-free joints in a wider range of welding parameters. These can be attributed to the significant improvement of material flow caused by the formation of a staggered layer structure and the unbalanced force between the US and LS during the DBT-FSW process. 展开更多
关键词 Bobbin tool friction stir welding Dual rotation Material flow Microstructure Microhardness
原文传递
Modeling of friction stir welding process for tools design 被引量:2
4
作者 San-Bao LIN Yan-Hua ZHAO Zi-Qiu HE Lin WU 《Frontiers of Materials Science》 SCIE CSCD 2011年第2期236-245,共10页
A three-dimensional friction stir welding (FSW) process model has been developed based on fluid mechanics. The material transport in the welding process has been regarded as a laminar, viscous, and non-Newtonian liq... A three-dimensional friction stir welding (FSW) process model has been developed based on fluid mechanics. The material transport in the welding process has been regarded as a laminar, viscous, and non-Newtonian liquid that flows past a rotating pin. A criterion to divide the weld zone has been given on the basis of cooperation of velocity field and viscosity field. That is, the η0-easy-flow zone that existed near the tool pin corresponded to the weld nugget zone; the area between the η0-easy-flow zone and η1-viscosity band is corresponded to the thermal-mechanical affected zone (TMAZ). The model gives some useful information to improve the understanding of material flow in FSW through the simulation result of velocity distribution. In order to appraise the friction stir pin design, three kinds of pin geometry, one is column pin, the second is taper pin, and the last one is screw threaded taper pin, were used in the model. The pin geometry seriously affected the simulation result of velocity distribution in the η0-easy-flow zone. The velocity distribution in the η0-easy-flow zone can be considered as the criterion of optimizing friction stir tool design. This study will benefit to direct the friction stir tool design. 展开更多
关键词 friction stir welding (FSM) 2014Al alloy model flow fdction stir pin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部