Branch identification technology is a key technology to achieve automated pruning of fruit tree branches, and one of its technical bottlenecks lies in the stitching of branch images. To this end, we propose a set of b...Branch identification technology is a key technology to achieve automated pruning of fruit tree branches, and one of its technical bottlenecks lies in the stitching of branch images. To this end, we propose a set of branch image stitching technology algorithms. The algorithm is based on the grey-scale prime centroid method to determine the detection feature points, and uses the coordinate transformation matrix H of the corresponding points of the image to carry out the image geometric transformation, and realises the feature matching through sample comparison and classification methods. The experimental results show that the matched point images are more correct and less time-consuming.展开更多
Shenhu area in South China Sea includes extensive collapse and diapir structures,forming high-angle faults and vertical fracture system,which functions as a fluid migration channel for gas hydrate formation.In order t...Shenhu area in South China Sea includes extensive collapse and diapir structures,forming high-angle faults and vertical fracture system,which functions as a fluid migration channel for gas hydrate formation.In order to improve the imaging precision of natural gas hydrate in this area,especially for fault and fracture structures,the present work propose a velocity stitching technique that accelerates effectively the convergence of the shallow seafloor,indicating seafloor horizon interpretation and the initial interval velocity for model building.In the depth domain,pre-stack depth migration and residual curvature are built into the model based on high-precision grid-tomography velocity inversion,after several rounds of tomographic iterations,as the residual velocity field converges gradually.Test results of the Shenhu area show that the imaging precision of the fault zone is obviously improved,the fracture structures appear more clearly,the wave group characteristics significantly change for the better and the signal-to-noise ratio and resolution are improved.These improvements provide the necessary basis for the new reservoir model and field drilling risk tips,help optimize the favorable drilling target,and are crucial for the natural gas resource potential evaluation.展开更多
Virtual sewing is one of the key techniques in the realization of 3D computer aided garment design. After analysis and comparison, this article brings forward a method of virtual sewing based on draping knowledge. Two...Virtual sewing is one of the key techniques in the realization of 3D computer aided garment design. After analysis and comparison, this article brings forward a method of virtual sewing based on draping knowledge. Two new concepts are introduced. One is the conversion of garment pattern pieces’ attributes and the other is the "clothes shell"—a middleware to simplify the mapping process. Meanwhile, the method implements the mapping process and completes virtual sewing by setting anchor points and lines on the virtual model. The method has been applied to a simulation system and proved to be successful.展开更多
文摘Branch identification technology is a key technology to achieve automated pruning of fruit tree branches, and one of its technical bottlenecks lies in the stitching of branch images. To this end, we propose a set of branch image stitching technology algorithms. The algorithm is based on the grey-scale prime centroid method to determine the detection feature points, and uses the coordinate transformation matrix H of the corresponding points of the image to carry out the image geometric transformation, and realises the feature matching through sample comparison and classification methods. The experimental results show that the matched point images are more correct and less time-consuming.
基金This study was financially supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0207)Dedicated Fund for Promoting High-Quality Economic Development in Guangdong Province(Marine Economic Development Project)(GDNRC[2020]045)the State Key Laboratory of Marine Geology of Tongji University(MGK202007).
文摘Shenhu area in South China Sea includes extensive collapse and diapir structures,forming high-angle faults and vertical fracture system,which functions as a fluid migration channel for gas hydrate formation.In order to improve the imaging precision of natural gas hydrate in this area,especially for fault and fracture structures,the present work propose a velocity stitching technique that accelerates effectively the convergence of the shallow seafloor,indicating seafloor horizon interpretation and the initial interval velocity for model building.In the depth domain,pre-stack depth migration and residual curvature are built into the model based on high-precision grid-tomography velocity inversion,after several rounds of tomographic iterations,as the residual velocity field converges gradually.Test results of the Shenhu area show that the imaging precision of the fault zone is obviously improved,the fracture structures appear more clearly,the wave group characteristics significantly change for the better and the signal-to-noise ratio and resolution are improved.These improvements provide the necessary basis for the new reservoir model and field drilling risk tips,help optimize the favorable drilling target,and are crucial for the natural gas resource potential evaluation.
基金Science and Technology Commission Development Foundation of Shanghai Municipality (015111034)
文摘Virtual sewing is one of the key techniques in the realization of 3D computer aided garment design. After analysis and comparison, this article brings forward a method of virtual sewing based on draping knowledge. Two new concepts are introduced. One is the conversion of garment pattern pieces’ attributes and the other is the "clothes shell"—a middleware to simplify the mapping process. Meanwhile, the method implements the mapping process and completes virtual sewing by setting anchor points and lines on the virtual model. The method has been applied to a simulation system and proved to be successful.