In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati...In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.展开更多
This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s...This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.展开更多
This paper is devoted to the unique solvability of backward stochastic Volterra integral equations (BSVIEs, for short), in terms of both M-solution and the adapted solutions. We prove the existence and uniqueness of...This paper is devoted to the unique solvability of backward stochastic Volterra integral equations (BSVIEs, for short), in terms of both M-solution and the adapted solutions. We prove the existence and uniqueness of M-solutions of BSVIEs in Lp (1 〈 p 〈 2), which extends the existing results on M-solutions. The unique solvability of adapted solutions of BSVIEs in Lp (p 〉 1) is also considered, which also generalizes the results in the existing literature.展开更多
In this paper,we consider the Euler-Maruyama method for a class of stochastic Volterra integral equations(SVIEs).It is known that the strong convergence order of the EulerMaruyama method is 12.However,the strong super...In this paper,we consider the Euler-Maruyama method for a class of stochastic Volterra integral equations(SVIEs).It is known that the strong convergence order of the EulerMaruyama method is 12.However,the strong superconvergence order 1 can be obtained for a class of SVIEs if the kernelsσi(t,t)=0 for i=1 and 2;otherwise,the strong convergence order is 12.Moreover,the theoretical results are illustrated by some numerical examples.展开更多
We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper.Strong convergence rate(at fixed point)of the corresponding Euler-Maruy...We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper.Strong convergence rate(at fixed point)of the corresponding Euler-Maruyama method is obtained when coefficients f and g both satisfy local Lipschitz and linear growth conditions.An example is provided to interpret our conclusions.Our result generalizes and improves the conclusion in[J.Gao,H.Liang,S.Ma,Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay,Appl.Math.Comput.,348(2019)385-398.]展开更多
We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a pa...We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.展开更多
For a backward stochastic differential equation(BSDE,for short),when the generator is not progressively measurable,it might not admit adapted solutions,shown by an example.However,for backward stochastic Volterra inte...For a backward stochastic differential equation(BSDE,for short),when the generator is not progressively measurable,it might not admit adapted solutions,shown by an example.However,for backward stochastic Volterra integral equations(BSVIEs,for short),the generators are allowed to be anticipating.This gives,among other things,an essential difference between BSDEs and BSVIEs.Under some proper conditions,the well-posedness of such BSVIEs is established.Further,the results are extended to path-dependent BSVIEs,in which the generators can depend on the future paths of unknown processes.An additional finding is that for path-dependent BSVIEs,in general,the situation of anticipating generators is not avoidable,and the adaptedness condition similar to that imposed for anticipated BSDEs by Peng−Yang[22]is not necessary.展开更多
This paper studies linear quadratic games problem for stochastic Volterra integral equations(SVIEs in short) where necessary and sufficient conditions for the existence of saddle points are derived in two different wa...This paper studies linear quadratic games problem for stochastic Volterra integral equations(SVIEs in short) where necessary and sufficient conditions for the existence of saddle points are derived in two different ways.As a consequence,the open problems raised by Chen and Yong(2007) are solved.To characterize the saddle points more clearly,coupled forward-backward stochastic Volterra integral equations and stochastic Fredholm-Volterra integral equations are introduced.Compared with deterministic game problems,some new terms arising from the procedure of deriving the later equations reflect well the essential nature of stochastic systems.Moreover,our representations and arguments are even new in the classical SDEs case.展开更多
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
文摘In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.
基金the financial support provided by the Swedish Research Council grant(2020-04697)the Norwegian Research Council grant(250768/F20),respectively。
文摘This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.
基金Supported in part by National Natural Science Foundation of China (Grant Nos. 10771122 and 11071145)Natural Science Foundation of Shandong Province of China (Grant No. Y2006A08)+3 种基金Foundation for Innovative Research Groups of National Natural Science Foundation of China (Grant No. 10921101)National Basic Research Program of China (973 Program, Grant No. 2007CB814900)Independent Innovation Foundation of Shandong University (Grant No. 2010JQ010)Graduate Independent Innovation Foundation of Shandong University (GIIFSDU)
文摘This paper is devoted to the unique solvability of backward stochastic Volterra integral equations (BSVIEs, for short), in terms of both M-solution and the adapted solutions. We prove the existence and uniqueness of M-solutions of BSVIEs in Lp (1 〈 p 〈 2), which extends the existing results on M-solutions. The unique solvability of adapted solutions of BSVIEs in Lp (p 〉 1) is also considered, which also generalizes the results in the existing literature.
基金supported by the Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems and Basic Scientific Research in Colleges and Universities of Heilongjiang Province(SFP of Heilongjiang University,No.KJCX201924).
文摘In this paper,we consider the Euler-Maruyama method for a class of stochastic Volterra integral equations(SVIEs).It is known that the strong convergence order of the EulerMaruyama method is 12.However,the strong superconvergence order 1 can be obtained for a class of SVIEs if the kernelsσi(t,t)=0 for i=1 and 2;otherwise,the strong convergence order is 12.Moreover,the theoretical results are illustrated by some numerical examples.
基金Supported by Beijing Municipal Natural Science Foundation(1192013).
文摘We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper.Strong convergence rate(at fixed point)of the corresponding Euler-Maruyama method is obtained when coefficients f and g both satisfy local Lipschitz and linear growth conditions.An example is provided to interpret our conclusions.Our result generalizes and improves the conclusion in[J.Gao,H.Liang,S.Ma,Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay,Appl.Math.Comput.,348(2019)385-398.]
文摘We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.
基金Hanxiao Wang would like to thank Chenchen Mou(of City University of Hong Kong)for some useful discussionsJiongmin Yong is supported in part by NSF(Grant No.DMS-1812921)+1 种基金Chao Zhou is supported by NSFC(Grant No.11871364)Singapore MOE AcRF(Grant Nos.A-800453-00-00,R-146-000-271-112 and R-146-000-284-114).
文摘For a backward stochastic differential equation(BSDE,for short),when the generator is not progressively measurable,it might not admit adapted solutions,shown by an example.However,for backward stochastic Volterra integral equations(BSVIEs,for short),the generators are allowed to be anticipating.This gives,among other things,an essential difference between BSDEs and BSVIEs.Under some proper conditions,the well-posedness of such BSVIEs is established.Further,the results are extended to path-dependent BSVIEs,in which the generators can depend on the future paths of unknown processes.An additional finding is that for path-dependent BSVIEs,in general,the situation of anticipating generators is not avoidable,and the adaptedness condition similar to that imposed for anticipated BSDEs by Peng−Yang[22]is not necessary.
基金supported by National Basic Research Program of China(973 Program)(Grant No.2011CB808002)National Natural Science Foundation of China(Grant Nos.11231007,11301298,11471231,11401404,11371226,11071145 and 11231005)+2 种基金China Postdoctoral Science Foundation(Grant No.2014M562321)Foundation for Innovative Research Groups of National Natural Science Foundation of China(Grant No.11221061)the Program for Introducing Talents of Discipline to Universities(the National 111Project of China's Higher Education)(Grant No.B12023)
文摘This paper studies linear quadratic games problem for stochastic Volterra integral equations(SVIEs in short) where necessary and sufficient conditions for the existence of saddle points are derived in two different ways.As a consequence,the open problems raised by Chen and Yong(2007) are solved.To characterize the saddle points more clearly,coupled forward-backward stochastic Volterra integral equations and stochastic Fredholm-Volterra integral equations are introduced.Compared with deterministic game problems,some new terms arising from the procedure of deriving the later equations reflect well the essential nature of stochastic systems.Moreover,our representations and arguments are even new in the classical SDEs case.