The control problem for single-input single-output(SISO) systems in the presence of mixed uncertainties, both stochastic and deterministic uncertainties, is considered. The stochastic uncertainties are modeled as ex...The control problem for single-input single-output(SISO) systems in the presence of mixed uncertainties, both stochastic and deterministic uncertainties, is considered. The stochastic uncertainties are modeled as exogenous noises, while the deterministic uncertainties are time invariant and appear as the unknown parameters which lie in a bounded interval. Based on a subdivision for the continuous interval, a robust adaptive controller is designed. The controller can not only realize the system output to track the desired output, but also learn a more accurate interval which contains the true value of the unknown parameter with a learning error given in advance. An example is given finally to demonstrate the effectiveness of the proposed method.展开更多
This paper considers the adaptive control of discrete-time hybrid stochastic systems with unknown randomly jumping parameters described by a finite-state hidden Markov chain. An intuitive yet longstanding conjecture i...This paper considers the adaptive control of discrete-time hybrid stochastic systems with unknown randomly jumping parameters described by a finite-state hidden Markov chain. An intuitive yet longstanding conjecture in this area is that such hybrid systems can be adaptively stabilized whenever the rate of transition of the hidden Markov chain is small enough. This paper provides a rigorous positive answer to this conjecture by establishing the global stability of a gradient-algorithm-based adaptive linear-quadratic control.展开更多
基金supported by the National Natural Science Foundation of China(61273127U1534208)+2 种基金the Key Program of National Natural Science Foundation of China(61533014)the Key Laboratory for Fault Diagnosis and Maintenance of Spacecraft in Orbit(SDML-OF2015004)the Science and Technology Preject of Shaanxi Province(2016GY-108)
文摘The control problem for single-input single-output(SISO) systems in the presence of mixed uncertainties, both stochastic and deterministic uncertainties, is considered. The stochastic uncertainties are modeled as exogenous noises, while the deterministic uncertainties are time invariant and appear as the unknown parameters which lie in a bounded interval. Based on a subdivision for the continuous interval, a robust adaptive controller is designed. The controller can not only realize the system output to track the desired output, but also learn a more accurate interval which contains the true value of the unknown parameter with a learning error given in advance. An example is given finally to demonstrate the effectiveness of the proposed method.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 69425003) the National Key Project of China.
文摘This paper considers the adaptive control of discrete-time hybrid stochastic systems with unknown randomly jumping parameters described by a finite-state hidden Markov chain. An intuitive yet longstanding conjecture in this area is that such hybrid systems can be adaptively stabilized whenever the rate of transition of the hidden Markov chain is small enough. This paper provides a rigorous positive answer to this conjecture by establishing the global stability of a gradient-algorithm-based adaptive linear-quadratic control.