期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:6
1
作者 DAI Wei LI De-peng +1 位作者 CHEN Qi-xin CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu... As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 展开更多
关键词 hematite grinding process particle size stochastic configuration network robust technique M-estimation nonparametric kernel density estimation
下载PDF
Communication-Censored Distributed Learning for Stochastic Configuration Networks
2
作者 Yujun Zhou Xiaowen Ge Wu Ai 《International Journal of Intelligence Science》 2022年第2期21-37,共17页
This paper aims to reduce the communication cost of the distributed learning algorithm for stochastic configuration networks (SCNs), in which information exchange between the learning agents is conducted only at a tri... This paper aims to reduce the communication cost of the distributed learning algorithm for stochastic configuration networks (SCNs), in which information exchange between the learning agents is conducted only at a trigger time. For this purpose, we propose the communication-censored distributed learning algorithm for SCN, namely ADMMM-SCN-ET, by introducing the event-triggered communication mechanism to the alternating direction method of multipliers (ADMM). To avoid unnecessary information transmissions, each learning agent is equipped with a trigger function. Only if the event-trigger error exceeds a specified threshold and meets the trigger condition, the agent will transmit the variable information to its neighbors and update its state in time. The simulation results show that the proposed algorithm can effectively reduce the communication cost for training decentralized SCNs and save communication resources. 展开更多
关键词 Event-Triggered Communication Distributed Learning stochastic Configuration networks (SCN) Alternating Direction Method of Multipliers (ADMM)
下载PDF
Double Pruning Structure Design for Deep Stochastic Configuration Networks Based on Mutual Information and Relevance
3
作者 YAN Aijun LI Jiale TANG Jian 《Instrumentation》 2022年第4期26-39,共14页
Deep stochastic configuration networks(DSCNs)produce redundant hidden nodes and connections during training,which complicates their model structures.Aiming at the above problems,this paper proposes a double pruning st... Deep stochastic configuration networks(DSCNs)produce redundant hidden nodes and connections during training,which complicates their model structures.Aiming at the above problems,this paper proposes a double pruning structure design algorithm for DSCNs based on mutual information and relevance.During the training process,the mutual information algorithm is used to calculate and sort the importance scores of the nodes in each hidden layer in a layer-by-layer manner,the node pruning rate of each layer is set according to the depth of the DSCN at the current time,the nodes that contribute little to the model are deleted,and the network-related parameters are updated.When the model completes the configuration procedure,the correlation evaluation strategy is used to sort the global connection weights and delete insignificance connections;then,the network parameters are updated after pruning is completed.The experimental results show that the proposed structure design method can effectively compress the scale of a DSCN model and improve its modeling speed;the model accuracy loss is small,and fine-tuning for accuracy restoration is not needed.The obtained DSCN model has certain application value in the field of regression analysis. 展开更多
关键词 Deep stochastic Configuration networks Mutual Information RELEVANCE Hidden Node Double Pruning
下载PDF
Model Prediction and Optimal Control of Gas Oxygen Content for A Municipal Solid Waste Incineration Process
4
作者 Aijun Yan Tingting Gu 《Instrumentation》 2024年第1期101-111,共11页
In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an... In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation. 展开更多
关键词 municipal solid waste incineration gas oxygen content stochastic configuration network model prediction differential evolution
下载PDF
基于混沌反馈乌燕鸥优化算法的随机配置网络参数优化 被引量:2
5
作者 严爱军 于小 《北京工业大学学报》 CAS CSCD 北大核心 2023年第7期746-757,共12页
为了解决随机配置网络(stochastic configuration network,SCN)隐含层参数的选择与分配会影响其预测精度的问题,提出一种基于混沌反馈乌燕鸥优化算法(chaotic feedback sooty tern optimization algorithm,CFSTOA)的SCN参数优化方法。首... 为了解决随机配置网络(stochastic configuration network,SCN)隐含层参数的选择与分配会影响其预测精度的问题,提出一种基于混沌反馈乌燕鸥优化算法(chaotic feedback sooty tern optimization algorithm,CFSTOA)的SCN参数优化方法。首先,利用Tent映射、线性因子调节策略、劣势种群反馈原则来改进乌燕鸥优化算法(sooty tern optimization algorithm,STOA),以增强算法的局部搜索能力,得到一种具备更快收敛速度和更高收敛精度的CFSTOA;然后,将CFSTOA用于优化SCN的正则化参数和权重偏差的尺度因子,从而得到最优的隐含层参数;最后,利用10个基准函数和4个标准回归数据集分别对CFSTOA的性能进行了测试。结果表明,CFSTOA具有更快的收敛速度且不易陷入局部最优,可以提高SCN算法的预测精度和训练速度。 展开更多
关键词 随机配置网络(stochastic configuration network SCN) 乌燕鸥优化算法 反馈机制 TENT映射 参数优化 回归预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部