We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution co...We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.展开更多
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to ...In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.展开更多
We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approxi...Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.展开更多
This is the third part of the papers with the same title. We will discuss the problem of convergence of the semi-implicit difference scheme for a class of quasilinear SEE, which generalize the Crandall's work to t...This is the third part of the papers with the same title. We will discuss the problem of convergence of the semi-implicit difference scheme for a class of quasilinear SEE, which generalize the Crandall's work to the stochastic case.展开更多
In this paper, nonstandard analysis is employed to present an existence theory of -valued stochastic differential equations involving evolution drift. And (C0, 1)-evolution systems are also defined and investigated on...In this paper, nonstandard analysis is employed to present an existence theory of -valued stochastic differential equations involving evolution drift. And (C0, 1)-evolution systems are also defined and investigated on dual multi-Hilbertian spaces.展开更多
In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spac...In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].展开更多
In this paper,we investigate the theoretical and numerical analysis of the stochastic Volterra integro-differential equations(SVIDEs)driven by L´evy noise.The existence,uniqueness,boundedness and mean square expo...In this paper,we investigate the theoretical and numerical analysis of the stochastic Volterra integro-differential equations(SVIDEs)driven by L´evy noise.The existence,uniqueness,boundedness and mean square exponential stability of the analytic solutions for SVIDEs driven by L´evy noise are considered.The split-step theta method of SVIDEs driven by L´evy noise is proposed.The boundedness of the numerical solution and strong convergence are proved.Moreover,its mean square exponential stability is obtained.Some numerical examples are given to support the theoretical results.展开更多
An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to...An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.展开更多
For a repairable redundant system consisting of two same components with exponential lifetime and general repair time distribution, the probability densities of the system in some state at time t were determined b...For a repairable redundant system consisting of two same components with exponential lifetime and general repair time distribution, the probability densities of the system in some state at time t were determined by a group of ordinary and partial differential equations, called density evolution equations. It was proved that the time dependent solution of the density evolution equations uniquely exists and strongly converges to its steady state density solution by a semi group method. In this proof, it is not necessary to suppose that the repair rate function is bounded. The technique of the proof is valuable for many density evolution equations.展开更多
This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear functional integro-differential stochastic evolution equations in real separable Hilbert spaces. Under some suitable a...This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear functional integro-differential stochastic evolution equations in real separable Hilbert spaces. Under some suitable assumptions, the existence, uniqueness and asymptotic stability of the square-mean almost automorphic mild solution to some stochastic differential equations are established. As an application, we analyze the almost automorphic mild solution to some stochastic partial functional differential equation which turns out to be in good agreement with our abstract results.展开更多
In this paper, we establish existence and uniqueness of the mild solutions to a class of neutral stochastic evolution equations driven by Poisson random measures in some Hilbert space. Moreover, we adopt the Faedo-Gal...In this paper, we establish existence and uniqueness of the mild solutions to a class of neutral stochastic evolution equations driven by Poisson random measures in some Hilbert space. Moreover, we adopt the Faedo-Galerkin scheme to approximate the solutions.展开更多
This paper concerns the square-mean almost periodic mild solutions to a class of abstract nonautonomous functional integro-differential stochastic evolution equations in a real separable Hilbert space. By using the so...This paper concerns the square-mean almost periodic mild solutions to a class of abstract nonautonomous functional integro-differential stochastic evolution equations in a real separable Hilbert space. By using the so-called "Acquistapace–Terreni" conditions and the Banach fixed point theorem, we establish the existence, uniqueness and the asymptotical stability of square-mean almost periodic solutions to such nonautonomous stochastic differential equations. As an application, almost periodic solution to a concrete nonautonomous stochastic integro-differential equation is considered to illustrate the applicability of our abstract results.展开更多
In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the...In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortu- nately, the main result of stability derived by the condition is somewhat restrictive to be applied for practical application. This paper improves the corresponding results. The authors not only prove the mean-square stability of the numerical method but also prove the general mean-square stability of the numerical method. Furthermore, an example is given to illustrate the theory.展开更多
This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the ...This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.展开更多
In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear s...In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear stochastic integro-differential evolution equations associated with abstract Volterra equations. Some examples are also given to illustrate our theory.展开更多
This paper extends exit theorems of Da Prato and Zabczyk to nonconstant diffusion coefficients.It uses extensively general, exponential estimates due to Peszat.
In this paper, using the Girsanov transformation argument, we establish Talagrand-type T2 inequalities under the d2 metric and the uniform metric d∞ for the law of the solution of a class multivalued stochastic evolu...In this paper, using the Girsanov transformation argument, we establish Talagrand-type T2 inequalities under the d2 metric and the uniform metric d∞ for the law of the solution of a class multivalued stochastic evolution equations.展开更多
We introduce a new concept of μ-pseudo almost automorphic processes in p-th mean sense by employing the measure theory, and present some results on the functional space of such processes like completeness and composi...We introduce a new concept of μ-pseudo almost automorphic processes in p-th mean sense by employing the measure theory, and present some results on the functional space of such processes like completeness and composition theorems. Under some conditions, we establish the existence, uniqueness, and the global exponentially stability of μ-pseudo almost automorphic mild solutions for a class of nonlinear stochastic evolution equations driven by Brownian motion in a separable Hilbert space.展开更多
基金Supported by the Science and Technology Research Projects of Hubei Provincial Department of Education(B2022077)。
文摘We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
基金supported by NSFC(11271020,11401010)Natural Science Foundation of Anhui Province(1308085QA14)+1 种基金supported by NSFC(11571071)Innovation Program of Shanghai Municipal Education Commission(12ZZ063)
文摘In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.
文摘We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
文摘Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.
基金Work supported by National Natural Science Foundation of China.
文摘This is the third part of the papers with the same title. We will discuss the problem of convergence of the semi-implicit difference scheme for a class of quasilinear SEE, which generalize the Crandall's work to the stochastic case.
文摘In this paper, nonstandard analysis is employed to present an existence theory of -valued stochastic differential equations involving evolution drift. And (C0, 1)-evolution systems are also defined and investigated on dual multi-Hilbertian spaces.
基金This work is supported by the National Science Foundation of China.
文摘In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant No.LH2022A020).
文摘In this paper,we investigate the theoretical and numerical analysis of the stochastic Volterra integro-differential equations(SVIDEs)driven by L´evy noise.The existence,uniqueness,boundedness and mean square exponential stability of the analytic solutions for SVIDEs driven by L´evy noise are considered.The split-step theta method of SVIDEs driven by L´evy noise is proposed.The boundedness of the numerical solution and strong convergence are proved.Moreover,its mean square exponential stability is obtained.Some numerical examples are given to support the theoretical results.
基金Supported by the National Natural Science Foundation of China(11101140,11301177)the China Postdoctoral Science Foundation(2011M500721,2012T50391)the Zhejiang Natural Science Foundation of China(Y6110775,Y6110789)
文摘An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.
文摘For a repairable redundant system consisting of two same components with exponential lifetime and general repair time distribution, the probability densities of the system in some state at time t were determined by a group of ordinary and partial differential equations, called density evolution equations. It was proved that the time dependent solution of the density evolution equations uniquely exists and strongly converges to its steady state density solution by a semi group method. In this proof, it is not necessary to suppose that the repair rate function is bounded. The technique of the proof is valuable for many density evolution equations.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11201266 and 11171191)Tianyuan Youth Foundation of National Natural Science Foundation of China(Grant Nos.11026150 and 11026098)+2 种基金China Postdoctoral Science Foundation(Grant No.2013M541534)Shanghai Postdoctoral Science Foundation(Grant No.13R21415600)Excellent Youth Foundation of SDIBT
文摘This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear functional integro-differential stochastic evolution equations in real separable Hilbert spaces. Under some suitable assumptions, the existence, uniqueness and asymptotic stability of the square-mean almost automorphic mild solution to some stochastic differential equations are established. As an application, we analyze the almost automorphic mild solution to some stochastic partial functional differential equation which turns out to be in good agreement with our abstract results.
基金supported by the LPMC at Nankai University and National Natural Science Foundation of China(Grant No. 10671036)
文摘In this paper, we establish existence and uniqueness of the mild solutions to a class of neutral stochastic evolution equations driven by Poisson random measures in some Hilbert space. Moreover, we adopt the Faedo-Galerkin scheme to approximate the solutions.
基金Supported by National Natural Science Foundation of China(Grant Nos.11201266 and 11171191)TianyuanYouth Foundation of National Natural Science Foundation of China(Grant Nos.11026150 and 11026098)Excellent Youth Foundation of Shandong Institute of Business and Technology
文摘This paper concerns the square-mean almost periodic mild solutions to a class of abstract nonautonomous functional integro-differential stochastic evolution equations in a real separable Hilbert space. By using the so-called "Acquistapace–Terreni" conditions and the Banach fixed point theorem, we establish the existence, uniqueness and the asymptotical stability of square-mean almost periodic solutions to such nonautonomous stochastic differential equations. As an application, almost periodic solution to a concrete nonautonomous stochastic integro-differential equation is considered to illustrate the applicability of our abstract results.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No. 2012089:31541111213China Postdoctoral Science Foundation Funded Project under Grant No.2012M511615the State Key Program of National Natural Science of China under Grant No.61134012
文摘In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortu- nately, the main result of stability derived by the condition is somewhat restrictive to be applied for practical application. This paper improves the corresponding results. The authors not only prove the mean-square stability of the numerical method but also prove the general mean-square stability of the numerical method. Furthermore, an example is given to illustrate the theory.
文摘This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.
文摘In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear stochastic integro-differential evolution equations associated with abstract Volterra equations. Some examples are also given to illustrate our theory.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 10171101, 79970120) a grant from Tsinghua University.
文摘This paper extends exit theorems of Da Prato and Zabczyk to nonconstant diffusion coefficients.It uses extensively general, exponential estimates due to Peszat.
文摘In this paper, using the Girsanov transformation argument, we establish Talagrand-type T2 inequalities under the d2 metric and the uniform metric d∞ for the law of the solution of a class multivalued stochastic evolution equations.
基金the Natural Science Foundation of Anhui Province (1708085MA03)the National Natural Science Foundation of China (Grant Nos. 11401010, 11571071).
文摘We introduce a new concept of μ-pseudo almost automorphic processes in p-th mean sense by employing the measure theory, and present some results on the functional space of such processes like completeness and composition theorems. Under some conditions, we establish the existence, uniqueness, and the global exponentially stability of μ-pseudo almost automorphic mild solutions for a class of nonlinear stochastic evolution equations driven by Brownian motion in a separable Hilbert space.