In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove ...In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove convergence, we use rough paths techniques. Theoretical bounds are established and numerical simulations are displayed.展开更多
In this paper we study a fractional stochastic heat equation on Rd (d 〉 1) with additive noise /t u(t, x) = Dα/δ u(t, x)+ b(u(t, x) ) + WH (t, x) where D α/δ is a nonlocal fractional differential...In this paper we study a fractional stochastic heat equation on Rd (d 〉 1) with additive noise /t u(t, x) = Dα/δ u(t, x)+ b(u(t, x) ) + WH (t, x) where D α/δ is a nonlocal fractional differential operator and W H is a Gaussian-colored noise. We show the existence and the uniqueness of the mild solution for this equation. In addition, in the case of space dimension d = 1, we prove the existence of the density for this solution and we establish lower and upper Gaussian bounds for the density by Malliavin calculus.展开更多
In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to ...In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.展开更多
Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been anal...Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.展开更多
In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequal...In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.展开更多
The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical ...The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0.展开更多
In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise....In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.Here,we adopt a new sufficient condition for the weak convergence criterion of the large deviation principle,which was initially proposed by Matoussi,Sabbagh and Zhang(2021).展开更多
In this paper, we consider a class of Sobolev-type fractional neutral stochastic differential equations driven by fractional Brownian motion with infinite delay in a Hilbert space. When α>1-H, by the ...In this paper, we consider a class of Sobolev-type fractional neutral stochastic differential equations driven by fractional Brownian motion with infinite delay in a Hilbert space. When α>1-H, by the technique of Sadovskii’s fixed point theorem, stochastic calculus and the methods adopted directly from deterministic control problems, we study the approximate controllability of the stochastic system.展开更多
Fractional stochastic kinetics equations have proven to be valuable tools for the point reactor kinetics model, where the nuclear reactions are not fully described by deterministic relations. A fractional stochastic m...Fractional stochastic kinetics equations have proven to be valuable tools for the point reactor kinetics model, where the nuclear reactions are not fully described by deterministic relations. A fractional stochastic model for the point kinetics system with multi-group of precursors,including the effect of temperature feedback, has been developed and analyzed. A major mathematical and inflexible scheme to the point kinetics model is obtained by merging the fractional and stochastic technique. A novel split-step method including mathematical tools of the Laplace transforms, Mittage–Leffler function, eigenvalues of the coefficient matrix, and its corresponding eigenvectors have been used for the fractional stochastic matrix differential equation. The validity of the proposed technique has been demonstrated via calculations of the mean and standard deviation of neutrons and precursor populations for various reactivities: step, ramp, sinusoidal, and temperature reactivity feedback. The results of the proposed method agree well with the conventional one of the deterministic point kinetics equations.展开更多
In this paper,we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussian noise with Hurst index H∈(1/2,1).A sharp regularity estimate of the mild solution and the...In this paper,we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussian noise with Hurst index H∈(1/2,1).A sharp regularity estimate of the mild solution and the numerical scheme constructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed.With the help of inverse Laplace transform and fractional Ritz projection,we obtain the accurate error estimates in time and space.Finally,our theoretical results are accompanied by numerical experiments.展开更多
Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)...Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.展开更多
For solving the stochastic differential equations driven by fractional Brownian motion,we present the modified split-step theta method by combining truncated Euler-Maruyama method with split-step theta method.For the ...For solving the stochastic differential equations driven by fractional Brownian motion,we present the modified split-step theta method by combining truncated Euler-Maruyama method with split-step theta method.For the problem under a locally Lipschitz condition and a linear growth condition,we analyze the strong convergence and the exponential stability of the proposed method.Moreover,for the stochastic delay differential equations with locally Lipschitz drift condition and globally Lipschitz diffusion condition,we give the order of convergence.Finally,numerical experiments are done to confirm the theoretical conclusions.展开更多
In this paper, we shall study a fourth-order stochastic heat equation driven by a fractional noise, which is fractional in time and white in space. We will discuss the existence and uniqueness of the solution to the e...In this paper, we shall study a fourth-order stochastic heat equation driven by a fractional noise, which is fractional in time and white in space. We will discuss the existence and uniqueness of the solution to the equation. Furthermore, the regularity of the solution will be obtained. On the other hand, the large deviation principle for the equation with a small perturbation will be established through developing a classical method.展开更多
This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg–Landau equations driven by additive noise with α∈(0, 1). First, we give some conditions for bounding the fr...This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg–Landau equations driven by additive noise with α∈(0, 1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Second, we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equation in H. At last, we prove the finiteness of fractal dimension of random attractors.展开更多
We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transf...We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.展开更多
This paper studies the Galerkin finite element approximations of a class of stochas- tic fractionM differential equations. The discretization in space is done by a standard continuous finite element method and almost ...This paper studies the Galerkin finite element approximations of a class of stochas- tic fractionM differential equations. The discretization in space is done by a standard continuous finite element method and almost optimal order error estimates are obtained. The discretization in time is achieved via the piecewise constant, discontinuous Galerkin method and a Laplace transform convolution quadrature. We give strong convergence error estimates for both semidiscrete and fully discrete schemes. The proof is based on the error estimates for the corresponding deterministic problem. Finally, the numerical example is carried out to verify the theoretical results.展开更多
We study the existence,uniqueness and Hlder regularity of the solution to a stochastic semilinear equation arising from 1-dimensional integro-differential scalar conservation laws.The equation is driven by double-para...We study the existence,uniqueness and Hlder regularity of the solution to a stochastic semilinear equation arising from 1-dimensional integro-differential scalar conservation laws.The equation is driven by double-parameter fractional noises.In addition,the existence and moment estimate are also obtained for the density of the law of such a solution.展开更多
This paper is devoted to study a class of stochastic Volterra equations driven by fractional Brownian motion. We first prove the Driver type integration by parts formula and the shift Harnack type inequalities. As a d...This paper is devoted to study a class of stochastic Volterra equations driven by fractional Brownian motion. We first prove the Driver type integration by parts formula and the shift Harnack type inequalities. As a direct application, we provide an alternative method to describe the regularities of the law of the solution. Secondly, by using the Malliavin calculus, the Bismut type derivative formula is established, which is then applied to the study of the gradient estimate and the strong Feller property. Finally, we establish the Talagrand type transportation cost inequalities for the law of the solution on the path space with respect to both the uniform metric and the L^2-metric.展开更多
We investigate a wave equation in the plane with an additive noise which is fractional in time and has a non-degenerate spatial covariance. The equation is shown to admit a process-valued solution. Also we give a cont...We investigate a wave equation in the plane with an additive noise which is fractional in time and has a non-degenerate spatial covariance. The equation is shown to admit a process-valued solution. Also we give a continuity modulus of the solution, and the HSlder continuity is presented.展开更多
This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the ...This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.展开更多
基金supported by MATH-AmSud 18-MATH-07 SaS MoTiDep ProjectHERMES project 41305+1 种基金partially supported by the Project ECOS-CONICYT C15E05,REDES 150038,MATH-AmSud 18-MATH-07 SaS MoTiDep Project and Fondecyt(1171335)supported by NSF(Grant DMS-1613163)
文摘In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove convergence, we use rough paths techniques. Theoretical bounds are established and numerical simulations are displayed.
基金Supported by NNSFC(11401313)NSFJS(BK20161579)+2 种基金CPSF(2014M560368,2015T80475)2014 Qing Lan ProjectSupported by MEC Project PAI80160047,Conicyt,Chile
文摘In this paper we study a fractional stochastic heat equation on Rd (d 〉 1) with additive noise /t u(t, x) = Dα/δ u(t, x)+ b(u(t, x) ) + WH (t, x) where D α/δ is a nonlocal fractional differential operator and W H is a Gaussian-colored noise. We show the existence and the uniqueness of the mild solution for this equation. In addition, in the case of space dimension d = 1, we prove the existence of the density for this solution and we establish lower and upper Gaussian bounds for the density by Malliavin calculus.
基金supported by NSFC(11271020,11401010)Natural Science Foundation of Anhui Province(1308085QA14)+1 种基金supported by NSFC(11571071)Innovation Program of Shanghai Municipal Education Commission(12ZZ063)
文摘In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.
文摘Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.
基金supported by the Natural Science Foundation of China(11901005,12071003)the Natural Science Foundation of Anhui Province(2008085QA20)。
文摘In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.
基金supported by the National Natural Science Foundation of China (No. 10661002)the NaturalScience Foundation of Guangxi (No. 0832065)the Excellent Talents Fund of Guangxi (No. 0825)
文摘The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0.
基金partially supported by the National Natural Science Foundation of China(11871382,12071361)partially supported by the National Natural Science Foundation of China(11971361,11731012)。
文摘In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.Here,we adopt a new sufficient condition for the weak convergence criterion of the large deviation principle,which was initially proposed by Matoussi,Sabbagh and Zhang(2021).
文摘In this paper, we consider a class of Sobolev-type fractional neutral stochastic differential equations driven by fractional Brownian motion with infinite delay in a Hilbert space. When α>1-H, by the technique of Sadovskii’s fixed point theorem, stochastic calculus and the methods adopted directly from deterministic control problems, we study the approximate controllability of the stochastic system.
文摘Fractional stochastic kinetics equations have proven to be valuable tools for the point reactor kinetics model, where the nuclear reactions are not fully described by deterministic relations. A fractional stochastic model for the point kinetics system with multi-group of precursors,including the effect of temperature feedback, has been developed and analyzed. A major mathematical and inflexible scheme to the point kinetics model is obtained by merging the fractional and stochastic technique. A novel split-step method including mathematical tools of the Laplace transforms, Mittage–Leffler function, eigenvalues of the coefficient matrix, and its corresponding eigenvectors have been used for the fractional stochastic matrix differential equation. The validity of the proposed technique has been demonstrated via calculations of the mean and standard deviation of neutrons and precursor populations for various reactivities: step, ramp, sinusoidal, and temperature reactivity feedback. The results of the proposed method agree well with the conventional one of the deterministic point kinetics equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.12071195,12301509,12225107)by the Innovative Groups of Basic Research in Gansu Province(Grant No.22JR5RA391)+3 种基金by the Major Science and Technology Projects in Gansu Province-Leading Talents in Science and Technology(Grant No.23ZDKA0005)by the Science and Technology Plan of Gansu Province(Grant No.22JR5RA535)by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-pd04)by the China Postdoctoral Science Foundation(Grant No.2023M731466).
文摘In this paper,we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussian noise with Hurst index H∈(1/2,1).A sharp regularity estimate of the mild solution and the numerical scheme constructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed.With the help of inverse Laplace transform and fractional Ritz projection,we obtain the accurate error estimates in time and space.Finally,our theoretical results are accompanied by numerical experiments.
文摘Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.
基金supported by the National Natural Science Foundation of China(Project No.12071100)Funds for the Central Universities(Project No.2022FRFK060019).
文摘For solving the stochastic differential equations driven by fractional Brownian motion,we present the modified split-step theta method by combining truncated Euler-Maruyama method with split-step theta method.For the problem under a locally Lipschitz condition and a linear growth condition,we analyze the strong convergence and the exponential stability of the proposed method.Moreover,for the stochastic delay differential equations with locally Lipschitz drift condition and globally Lipschitz diffusion condition,we give the order of convergence.Finally,numerical experiments are done to confirm the theoretical conclusions.
基金Supported by National Natural Science Foundation of China (Grant No. 10871103)
文摘In this paper, we shall study a fourth-order stochastic heat equation driven by a fractional noise, which is fractional in time and white in space. We will discuss the existence and uniqueness of the solution to the equation. Furthermore, the regularity of the solution will be obtained. On the other hand, the large deviation principle for the equation with a small perturbation will be established through developing a classical method.
基金Supported by National Natural Science Foundation of China(Grant Nos.11571245,11771444,11871138 and11871049)funding of V.C.&V.R.Key Lab of Sichuan Province+2 种基金the Yue Qi Young Scholar ProjectChina University of Mining and Technology(Beijing)China Scholarship Council(CSC)。
文摘This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg–Landau equations driven by additive noise with α∈(0, 1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Second, we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equation in H. At last, we prove the finiteness of fractal dimension of random attractors.
基金Acknowledgements The authors would like to thank the referees for helpful suggestions which allowed them to improve the presentation of this paper. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271093) and the Science Research Project of Hubei Provincial Department Of Education (No. Q20141306).
文摘We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.
文摘This paper studies the Galerkin finite element approximations of a class of stochas- tic fractionM differential equations. The discretization in space is done by a standard continuous finite element method and almost optimal order error estimates are obtained. The discretization in time is achieved via the piecewise constant, discontinuous Galerkin method and a Laplace transform convolution quadrature. We give strong convergence error estimates for both semidiscrete and fully discrete schemes. The proof is based on the error estimates for the corresponding deterministic problem. Finally, the numerical example is carried out to verify the theoretical results.
基金supported by Mathematical Tianyuan Foundation of China(Grant No.11226198)Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金National Natural Science Foundation of China(Grant No.11171062)Innovation Program of Shanghai Municipal Education Commission(Grant No.12ZZ063)
文摘We study the existence,uniqueness and Hlder regularity of the solution to a stochastic semilinear equation arising from 1-dimensional integro-differential scalar conservation laws.The equation is driven by double-parameter fractional noises.In addition,the existence and moment estimate are also obtained for the density of the law of such a solution.
基金Acknowledgements The author would like to thank Professor Feng-Yu Wang for his encouragement and comments that have led to improvements of the manuscript and the referees for helpful comments and corrections. This work was supported in part by the Research Project of Natural Science Foundation of Anhui Provincial Universities (Grant No. K32013A134), the Natural Science Foundation of Anhui Province (Grant No. 1508085QA03), and the National Natural Science Foundation of China (Grant No. 11371029).
文摘This paper is devoted to study a class of stochastic Volterra equations driven by fractional Brownian motion. We first prove the Driver type integration by parts formula and the shift Harnack type inequalities. As a direct application, we provide an alternative method to describe the regularities of the law of the solution. Secondly, by using the Malliavin calculus, the Bismut type derivative formula is established, which is then applied to the study of the gradient estimate and the strong Feller property. Finally, we establish the Talagrand type transportation cost inequalities for the law of the solution on the path space with respect to both the uniform metric and the L^2-metric.
基金Supported by NationalNatural Science Foundation of China (Grant No. 10871103)
文摘We investigate a wave equation in the plane with an additive noise which is fractional in time and has a non-degenerate spatial covariance. The equation is shown to admit a process-valued solution. Also we give a continuity modulus of the solution, and the HSlder continuity is presented.
文摘This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.