Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori...Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.展开更多
In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati...In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.展开更多
A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly dec...A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.展开更多
This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ...This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.展开更多
This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities o...This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions.展开更多
The Artificial Bee Colony (ABC) is one of the numerous stochastic algorithms for optimization that has been written for solving constrained and unconstrained optimization problems. This novel optimization algorithm is...The Artificial Bee Colony (ABC) is one of the numerous stochastic algorithms for optimization that has been written for solving constrained and unconstrained optimization problems. This novel optimization algorithm is very efficient and as promising as it is;it can be favourably compared to other optimization algorithms and in some cases, it has been proven to be better than some known algorithms (like Particle Swarm Optimization (PSO)), especially when used in Well placement optimization problems that can be encountered in the Petroleum industry. In this paper, the ABC algorithm has been modified to improve its speed and convergence in finding the optimum solution to a well placement optimization problem. The effects of variations of the control parameters for both algorithms were studied, as well as the algorithms’ performances in the cases studied. The modified ABC (MABC) algorithm gave better results than the Artificial Bee Colony algorithm. It was noticed that the performance of the ABC algorithm increased with increase in the number of its optimization agents for both algorithms studied. The modified ABC algorithm overcame the challenge posed by the use of uniformly generated random numbers with very rough NPV surface. This new modified ABC algorithm proposed in this work will be a great tool in optimization for the Petroleum industry as it involves Well placements for optimum oil production.展开更多
基金Acknowledgements: This work was supported by the Foundations of Post Doctor of China (No. 20060401001) and by the Science Research Projects of Ministry of Education of China (No. 06JA630056) and by the Natural Science Foundations of Ningxia (No. NZ0848).
基金supported by the Foundation of the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province(Grant No.181RTSTHN009)the Foundation of the Key Laboratory of Water Environment Simulation and Treatment in Henan Province(Grant No.2017016).
文摘Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.
基金supported by the National Natural Science Foundation of China (Grant No. 50679011)
文摘In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.
文摘A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.
文摘This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.
文摘This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions.
文摘The Artificial Bee Colony (ABC) is one of the numerous stochastic algorithms for optimization that has been written for solving constrained and unconstrained optimization problems. This novel optimization algorithm is very efficient and as promising as it is;it can be favourably compared to other optimization algorithms and in some cases, it has been proven to be better than some known algorithms (like Particle Swarm Optimization (PSO)), especially when used in Well placement optimization problems that can be encountered in the Petroleum industry. In this paper, the ABC algorithm has been modified to improve its speed and convergence in finding the optimum solution to a well placement optimization problem. The effects of variations of the control parameters for both algorithms were studied, as well as the algorithms’ performances in the cases studied. The modified ABC (MABC) algorithm gave better results than the Artificial Bee Colony algorithm. It was noticed that the performance of the ABC algorithm increased with increase in the number of its optimization agents for both algorithms studied. The modified ABC algorithm overcame the challenge posed by the use of uniformly generated random numbers with very rough NPV surface. This new modified ABC algorithm proposed in this work will be a great tool in optimization for the Petroleum industry as it involves Well placements for optimum oil production.