A technique is developed for finding a closed form expression for the cumulative distribution function of the maximum value of the objective function in a stochastic linear programming problem, where either the object...A technique is developed for finding a closed form expression for the cumulative distribution function of the maximum value of the objective function in a stochastic linear programming problem, where either the objective function coefficients or the right hand side coefficients are continuous random vectors with known probability distributions. This is the “wait and see” problem of stochastic linear programming. Explicit results for the distribution problem are extremely difficult to obtain;indeed, previous results are known only if the right hand side coefficients have an exponential distribution [1]. To date, no explicit results have been obtained for stochastic c, and no new results of any form have appeared since the 1970’s. In this paper, we obtain the first results for stochastic c, and new explicit results if b an c are stochastic vectors with an exponential, gamma, uniform, or triangle distribution. A transformation is utilized that greatly reduces computational time.展开更多
In this paper, we propose a Sample Average Approximation (SAA) method for a class of Stochastic Mathematical Programs with Complementarity Constraints (SMPCC) recently considered by Birbil, G/irkan and Listes [3]....In this paper, we propose a Sample Average Approximation (SAA) method for a class of Stochastic Mathematical Programs with Complementarity Constraints (SMPCC) recently considered by Birbil, G/irkan and Listes [3]. We study the statistical properties of obtained SAA estimators. In particular we show that under moderate conditions a sequence of weak stationary points of SAA programs converge to a weak stationary point of the true problem with probability approaching one at exponential rate as the sample size tends to infinity. To implement the SAA method more efficiently, we incorporate the method with some techniques such as Scholtes' regularization method and the well known smoothing NCP method. Some preliminary numerical results are reported.展开更多
文摘A technique is developed for finding a closed form expression for the cumulative distribution function of the maximum value of the objective function in a stochastic linear programming problem, where either the objective function coefficients or the right hand side coefficients are continuous random vectors with known probability distributions. This is the “wait and see” problem of stochastic linear programming. Explicit results for the distribution problem are extremely difficult to obtain;indeed, previous results are known only if the right hand side coefficients have an exponential distribution [1]. To date, no explicit results have been obtained for stochastic c, and no new results of any form have appeared since the 1970’s. In this paper, we obtain the first results for stochastic c, and new explicit results if b an c are stochastic vectors with an exponential, gamma, uniform, or triangle distribution. A transformation is utilized that greatly reduces computational time.
文摘In this paper, we propose a Sample Average Approximation (SAA) method for a class of Stochastic Mathematical Programs with Complementarity Constraints (SMPCC) recently considered by Birbil, G/irkan and Listes [3]. We study the statistical properties of obtained SAA estimators. In particular we show that under moderate conditions a sequence of weak stationary points of SAA programs converge to a weak stationary point of the true problem with probability approaching one at exponential rate as the sample size tends to infinity. To implement the SAA method more efficiently, we incorporate the method with some techniques such as Scholtes' regularization method and the well known smoothing NCP method. Some preliminary numerical results are reported.