A stochastic model is developed to predict the peniodic operation performance ofthe continuous counter-current adsorption process. The model takes into account theeffects of random backmixing of particles, axial dispe...A stochastic model is developed to predict the peniodic operation performance ofthe continuous counter-current adsorption process. The model takes into account theeffects of random backmixing of particles, axial dispersion of liquid phase, liquid- film mass transfer, intraparticle diffusion and panticle shape, and can revealclearly the behavior of solid and liquid phase in adsorption process. The simulation results agree with the experimental data rather well.展开更多
Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic ...Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic process modelling(DSPM)approach into dynamic simulation of the railway vehicle collision.This DSPM approach consists of two steps:(i)process description,four kinds of kernels are used to describe the uncertainty inherent in collision processes;(ii)solving,stochastic variational inferences and mini-batch algorithms can then be used to accelerate computations of stochastic processes.By applying DSPM,Gaussian process regression(GPR)and finite element(FE)methods to two collision scenarios(i.e.lead car colliding with a rigid wall,and the lead car colliding with another lead car),we are able to achieve a comprehensive analysis.The comparison between the DSPM approach and the FE method revealed that the DSPM approach is capable of calculating the corresponding confidence interval,simultaneously improving the overall computational efficiency.Comparing the DSPM approach with the GPR method indicates that the DSPM approach has the ability to accurately describe the dynamic response under unknown conditions.Overall,this research demonstrates the feasibility and usability of the proposed DSPM approach for stochastic dynamics simulation of the railway vehicle collision.展开更多
文摘A stochastic model is developed to predict the peniodic operation performance ofthe continuous counter-current adsorption process. The model takes into account theeffects of random backmixing of particles, axial dispersion of liquid phase, liquid- film mass transfer, intraparticle diffusion and panticle shape, and can revealclearly the behavior of solid and liquid phase in adsorption process. The simulation results agree with the experimental data rather well.
基金supported by the National Key Research and Development Project(No.2019YFB1405401)the National Natural Science Foundation of China(No.5217120056)。
文摘Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic process modelling(DSPM)approach into dynamic simulation of the railway vehicle collision.This DSPM approach consists of two steps:(i)process description,four kinds of kernels are used to describe the uncertainty inherent in collision processes;(ii)solving,stochastic variational inferences and mini-batch algorithms can then be used to accelerate computations of stochastic processes.By applying DSPM,Gaussian process regression(GPR)and finite element(FE)methods to two collision scenarios(i.e.lead car colliding with a rigid wall,and the lead car colliding with another lead car),we are able to achieve a comprehensive analysis.The comparison between the DSPM approach and the FE method revealed that the DSPM approach is capable of calculating the corresponding confidence interval,simultaneously improving the overall computational efficiency.Comparing the DSPM approach with the GPR method indicates that the DSPM approach has the ability to accurately describe the dynamic response under unknown conditions.Overall,this research demonstrates the feasibility and usability of the proposed DSPM approach for stochastic dynamics simulation of the railway vehicle collision.