期刊文献+
共找到2,942篇文章
< 1 2 148 >
每页显示 20 50 100
The Limit Distribution of Stochastic Evolution Equations Driven by-Stable Non-Gaussian Noise
1
作者 ZHAI Likai FU Hongbo 《应用数学》 北大核心 2024年第4期1180-1194,共15页
We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution co... We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process. 展开更多
关键词 stochastic evolution equation α-stable Non-Gaussian process DISTRIBUTION
下载PDF
High Order IMEX Stochastic Galerkin Schemes for Linear Transport Equation with Random Inputs and Diffusive Scalings
2
作者 Zheng Chen Lin Mu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期325-339,共15页
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g... In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property. 展开更多
关键词 stochastic Galerkin scheme linear transport equations generalized polynomial approach stochastic asymptotic-preserving property
下载PDF
Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation
3
作者 Hongsheng Su Lixia Dong +1 位作者 Xiaoying Yu Kai Liu 《Energy Engineering》 EI 2024年第4期973-986,共14页
Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take ... Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method. 展开更多
关键词 stochastic differential equation(SDE) condition-based maintenance(CBM) carbon emissions
下载PDF
GENERAL COUPLED MEAN-FIELD REFLECTED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
4
作者 李俊松 米超 +1 位作者 邢传智 赵德豪 《Acta Mathematica Scientia》 SCIE CSCD 2023年第5期2234-2262,共29页
In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The firs... In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner. 展开更多
关键词 refected backward stochastic differential equations forward-backward stochastic diferential equations comparison theorem Wasserstein metric MEAN-FIELD
下载PDF
A Comparative Survey of an Approximate Solution Method for Stochastic Delay Differential Equations
5
作者 Emenonye Christian Emenonye Donatus Anonwa 《Applied Mathematics》 2023年第3期196-207,共12页
This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st... This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. . 展开更多
关键词 Approximate Solution Differential equations Techniques stochastic Differential equation EXISTENCE UNIQUENESS Approximate Procedure
下载PDF
ANTICIPATED BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH JUMPS AND APPLICATIONS TO DYNAMIC RISK MEASURES
6
作者 缪亮亮 陈燕红 +1 位作者 肖肖 胡亦钧 《Acta Mathematica Scientia》 SCIE CSCD 2023年第3期1365-1381,共17页
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical... In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed. 展开更多
关键词 anticipated backward stochastic Volterra integral equations comparison theorems dynamic risk measures
下载PDF
AN INTEGRATION BY PARTS FORMULA FOR STOCHASTIC HEAT EQUATIONS WITH FRACTIONAL NOISE
7
作者 尹修伟 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期349-362,共14页
In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequal... In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities. 展开更多
关键词 integration by parts formula stochastic heat equations fractional Brownian motion shift Harnack inequality coupling by change of measures
下载PDF
Bayesian analysis for mixed-effects model defined by stochastic differential equations
8
作者 言方荣 张萍 +1 位作者 陆涛 林金官 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期122-127,共6页
The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding ... The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data. 展开更多
关键词 population pharmacokinetics mixed-effectsmodels stochastic differential equations Bayesian analysis
下载PDF
NADARAYA-WATSON ESTIMATORS FOR REFLECTED STOCHASTIC PROCESSES
9
作者 韩月才 张丁文 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期143-160,共18页
We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed proces... We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology. 展开更多
关键词 reflected stochastic differential equation discretely observed process continuously observed process Nadaraya-Watson estimator asymptotic behavior
下载PDF
Stochastic Maximum Principle for Optimal Advertising Models with Delay and Non-Convex Control Spaces
10
作者 Giuseppina Guatteri Federica Masiero 《Advances in Pure Mathematics》 2024年第6期442-450,共9页
In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwi... In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation. 展开更多
关键词 stochastic Optimal Control Delay equations Advertisement Models stochastic Maximum Principle
下载PDF
Asymptotic Analysis of a Stochastic Model of Mosquito-Borne Disease with the Use of Insecticides and Bet Nets
11
作者 Boubacar Sidiki Kouyaté Modeste N’zi 《Journal of Applied Mathematics and Physics》 2024年第1期305-329,共25页
Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic mo... Ross’ epidemic model describing the transmission of malaria uses two classes of infection, one for humans and one for mosquitoes. This paper presents a stochastic extension of a deterministic vector-borne epidemic model based only on the class of human infectious. The consistency of the model is established by proving that the stochastic delay differential equation describing the model has a unique positive global solution. The extinction of the disease is studied through the analysis of the stability of the disease-free equilibrium state and the persistence of the model. Finally, we introduce some numerical simulations to illustrate the obtained results. 展开更多
关键词 Vector-Borne Disease Epidemic Model stochastic Delay Differential equations stochastic Stability Lyapunov Functional Technique
下载PDF
TRANSPORTATION COST-INFORMATION INEQUALITY FOR A STOCHASTIC HEAT EQUATION DRIVEN BY FRACTIONAL-COLORED NOISE
12
作者 李瑞因 王新宇 《Acta Mathematica Scientia》 SCIE CSCD 2023年第6期2519-2532,共14页
In this paper,we prove Talagrand’s T2 transportation cost-information inequality for the law of stochastic heat equation driven by Gaussian noise,which is fractional for a time variable with the Hurst index H∈(1/2,1... In this paper,we prove Talagrand’s T2 transportation cost-information inequality for the law of stochastic heat equation driven by Gaussian noise,which is fractional for a time variable with the Hurst index H∈(1/2,1),and is correlated for the spatial variable.The Girsanov theorem for fractional-colored Gaussian noise plays an important role in the proof. 展开更多
关键词 stochastic heat equation transportation cost-information inequality fractionalcolored noise
下载PDF
THE LAW OF THE ITERATED LOGARITHM FOR SPATIAL AVERAGES OF THE STOCHASTIC HEAT EQUATION
13
作者 李精玉 张勇 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期907-918,共12页
Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)an... Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)and the functional LIL for a linear additive functional of the form∫[0,R]u(t,x)dx and the nonlinear additive functionals of the form∫[0,R]g(u(t,x))dx,where g:R→R is nonrandom and Lipschitz continuous,as R→∞for fixed t>0,using the localization argument. 展开更多
关键词 law of the iterated logarithm stochastic heat equation Malliavin calculus
下载PDF
A LARGE DEVIATION PRINCIPLE FOR THE STOCHASTIC GENERALIZED GINZBURG-LANDAU EQUATION DRIVEN BY JUMP NOISE
14
作者 王冉 张贝贝 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期505-530,共26页
In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.... In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.Here,we adopt a new sufficient condition for the weak convergence criterion of the large deviation principle,which was initially proposed by Matoussi,Sabbagh and Zhang(2021). 展开更多
关键词 large deviation principle weak convergence method stochastic generalized Ginzburg-Landau equation Poisson random measure
下载PDF
RAZUMIKHIN-TYPE THEOREM FOR NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY 被引量:6
15
作者 吴付科 胡适耕 毛学荣 《Acta Mathematica Scientia》 SCIE CSCD 2011年第4期1245-1258,共14页
This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several differen... This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations. 展开更多
关键词 neutral stochastic functional differential equations Razumikhin-type theorem ψ γ stability exponential stability polynomial stability
下载PDF
MULTI-DIMENSIONAL REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND THE COMPARISON THEOREM 被引量:5
16
作者 吴臻 消华 《Acta Mathematica Scientia》 SCIE CSCD 2010年第5期1819-1836,共18页
In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument... In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth. 展开更多
关键词 backward stochastic differential equations comparison theorem local time
下载PDF
Existence and Stability of Solutions to Highly Nonlinear Stochastic Differential Delay Equations Driven by G-Brownian Motion 被引量:3
17
作者 FEI Chen FEI Wei-yin YAN Li-tan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第2期184-204,共21页
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been... Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs. 展开更多
关键词 stochastic differential delay equation (SDDE) SUBLINEAR EXPECTATION EXISTENCE and UNIQUENESS G-Brownian motion stability and BOUNDEDNESS
下载PDF
GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY 被引量:3
18
作者 蒲学科 郭柏灵 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1968-1984,共17页
This paper deals with the stochastic 2D Boussinesq equations with partial viscosity. This is a coupled system of Navier-Stokes/Euler equations and the transport equation for temperature under additive noise. Global we... This paper deals with the stochastic 2D Boussinesq equations with partial viscosity. This is a coupled system of Navier-Stokes/Euler equations and the transport equation for temperature under additive noise. Global well-posedness result of this system under partial viscosity is proved by using classical energy estimates method. 展开更多
关键词 stochastic PDEs Boussinesq equations global well-posedness
下载PDF
Backward stochastic Volterra integral equations——a brief survey 被引量:2
19
作者 YONG Jiong-min 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期383-394,共12页
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati... In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs. 展开更多
关键词 backward stochastic diff erential equation backward stochastic Volterra integral equation M-solution comparison theorem
下载PDF
EXPONENTIAL STABILITY FOR NONLINEAR HYBRID STOCHASTIC PANTOGRAPH EQUATIONS AND NUMERICAL APPROXIMATION 被引量:2
20
作者 周少波 薛明皋 《Acta Mathematica Scientia》 SCIE CSCD 2014年第4期1254-1270,共17页
The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth conditio... The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth condition is replaced by polynomial growth conditions, under which there exists a unique global solution and the solution is almost surely exponentially stable. On the basis of a series of lemmas, the paper establishes a new criterion on convergence in probability of the Euler-Maruyama approximate solution. The criterion is very general so that many highly nonlinear stochastic pantograph equations can obey these conditions. A highly nonlinear example is provided to illustrate the main theory. 展开更多
关键词 stochastic pantograph equation hybrid system polynomial growth conditions exponential stability convergence in probability
下载PDF
上一页 1 2 148 下一页 到第
使用帮助 返回顶部