Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula...Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.展开更多
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-w...Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.展开更多
Modern tall buildings are generally built in urban areas, where value of the terrain roughness length is much greater than that of the general terrain areas, therefore wind-induced vibrations become more pronounced. T...Modern tall buildings are generally built in urban areas, where value of the terrain roughness length is much greater than that of the general terrain areas, therefore wind-induced vibrations become more pronounced. The present formulas of numerical analysis of wind-induced response become less accurate. A more accurate expression of along-wind load spectrum matrix is proposed. On the basis of the expression, structural analysis formula of along-wind displacement and acceleration response are developed and programmed. The rationality of these formulas are illustrated in examples.展开更多
采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机...采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机激励两种情况的特征值和特征频率对振动特性的影响;利用响应方差最大值和谱密度解析了BTA镗杆横向振动的临界转速与临界失稳频率;明确了镗杆随转速、刚度、初始轴向总力和剪切模量等参数变化对系统振动特性的影响机制:镗杆转速变化对系统稳定性不再具有单调性,随BTA镗杆转速持续增加,系统可历经两次转速的临界失稳,相继出现二次失稳和二次稳定;增加系统等效刚度和等效剪切模量会促进工作过程的稳定,改变轴向力对工作过程稳定的影响不明显;并以随机振动物理试验信号的功率谱分析,验证了理论仿真结果与试验结果的一致性。该研究在一定程度上揭示了BTA深孔工艺系统运动状态的复杂性,这种研究模式为进一步分析在复杂状态下的运动演化提供了更多的可能。研究结论为更好地理解BTA深孔镗杆工作时的随机动力行为提供了依据,也为BTA深孔工艺过程的振动控制和参数优化奠定了理论基础。展开更多
In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit me...In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process. We review the use of this factor for time-variant reliability design by comparing it to the conven- tional Davenport's peak factor. Based on the asymptotic theory of statistical extremes, a new closed-form peak factor, the so-called Gamma peak factor, can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process. Using the Gamma peak factor, a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration. The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated. Utilizing wind tunnel data derived from synchronous multi-pressure measurements, we carried out a wind-induced time history response analysis of the Common- wealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration. Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic service- ability performance design of modem tall buildings.展开更多
The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the struct...The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k - two equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-fl method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example, the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed.展开更多
The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation.Firstly,according to the random vibration theory,the effect of fluctuating wind o...The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation.Firstly,according to the random vibration theory,the effect of fluctuating wind on the tower can be modeled as a 19-dimensional correlated random process,and the wind-induced vibration analysis of the tower subjected to dynamic wind load was further obtained.On the basis of the others'works,a bi-model dynamic model is proposed.Finally,a dynamic model is proposed to study the wind-induced vibration control analysis using viscous fluid dampers,and the optimal damping coefficient is obtained regarding the wind-induced response of the upper turret as optimization objectives.Analysis results show that the maximum peak response of the tower under dynamic wind load is far beyond the allowable range of the code.The wind-induced responses and the wind vibration input energy of the tower are decreased greatly by using a fluid viscous damper,and the peak acceleration responses of the upper turret is reduced by 43.4%.展开更多
基金Projects(50978203,51208254)supported by the National Natural Science Foundation of ChinaProject(BK2012390)supported by Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.
基金the National Natural Science Foundation of China (Grant No. 50608022)the Foundation of National Science and Technology(GrantNo.2006BAJ03B04)
文摘Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.
文摘Modern tall buildings are generally built in urban areas, where value of the terrain roughness length is much greater than that of the general terrain areas, therefore wind-induced vibrations become more pronounced. The present formulas of numerical analysis of wind-induced response become less accurate. A more accurate expression of along-wind load spectrum matrix is proposed. On the basis of the expression, structural analysis formula of along-wind displacement and acceleration response are developed and programmed. The rationality of these formulas are illustrated in examples.
文摘采用随机方法分析了蕴含轴向流动流体的BTA(boring and trepanning association)深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin Method离散化处理,分析了BTA镗杆在有、无随机激励两种情况的特征值和特征频率对振动特性的影响;利用响应方差最大值和谱密度解析了BTA镗杆横向振动的临界转速与临界失稳频率;明确了镗杆随转速、刚度、初始轴向总力和剪切模量等参数变化对系统振动特性的影响机制:镗杆转速变化对系统稳定性不再具有单调性,随BTA镗杆转速持续增加,系统可历经两次转速的临界失稳,相继出现二次失稳和二次稳定;增加系统等效刚度和等效剪切模量会促进工作过程的稳定,改变轴向力对工作过程稳定的影响不明显;并以随机振动物理试验信号的功率谱分析,验证了理论仿真结果与试验结果的一致性。该研究在一定程度上揭示了BTA深孔工艺系统运动状态的复杂性,这种研究模式为进一步分析在复杂状态下的运动演化提供了更多的可能。研究结论为更好地理解BTA深孔镗杆工作时的随机动力行为提供了依据,也为BTA深孔工艺过程的振动控制和参数优化奠定了理论基础。
基金Project supported by the National Natural Science Foundation of China (No. 51008275)the China Postdoctoral Science Foundation (No.201104736)
文摘In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process. We review the use of this factor for time-variant reliability design by comparing it to the conven- tional Davenport's peak factor. Based on the asymptotic theory of statistical extremes, a new closed-form peak factor, the so-called Gamma peak factor, can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process. Using the Gamma peak factor, a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration. The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated. Utilizing wind tunnel data derived from synchronous multi-pressure measurements, we carried out a wind-induced time history response analysis of the Common- wealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration. Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic service- ability performance design of modem tall buildings.
基金the Key Project of Fund of Science and Technology Development of Shanghai (No. 07JC14023)the National Natural Science Foundation of China(No. 10572091)
文摘The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k - two equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-fl method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example, the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed.
文摘The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation.Firstly,according to the random vibration theory,the effect of fluctuating wind on the tower can be modeled as a 19-dimensional correlated random process,and the wind-induced vibration analysis of the tower subjected to dynamic wind load was further obtained.On the basis of the others'works,a bi-model dynamic model is proposed.Finally,a dynamic model is proposed to study the wind-induced vibration control analysis using viscous fluid dampers,and the optimal damping coefficient is obtained regarding the wind-induced response of the upper turret as optimization objectives.Analysis results show that the maximum peak response of the tower under dynamic wind load is far beyond the allowable range of the code.The wind-induced responses and the wind vibration input energy of the tower are decreased greatly by using a fluid viscous damper,and the peak acceleration responses of the upper turret is reduced by 43.4%.