An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is...An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is governed by Heston's stochastic volatility(SV)model.With the objective of maximizing the expected index utility of the terminal wealth of the insurance company,by using the classical tools of stochastic optimal control,the explicit expressions for optimal strategies and optimal value functions are derived.An interesting conclusion is found that it is better to buy one reinsurance than two under the assumption of this paper.Moreover,some numerical simulations and sensitivity analysis are provided.展开更多
An explicit formula for the transition probability density function of the Hull and White stochastic volatility model in presence of nonzero correlation between the stochastic differentials of the Wiener processes on ...An explicit formula for the transition probability density function of the Hull and White stochastic volatility model in presence of nonzero correlation between the stochastic differentials of the Wiener processes on the right hand side of the model equations is presented. This formula gives the transition probability density function as a two dimensional integral of an explicitly known integrand. Previously an explicit formula for this probability density function was known only in the case of zero correlation. In the case of nonzero correlation from the formula for the transition probability density function we deduce formulae (expressed by integrals) for the price of European call and put options and closed form formulae (that do not involve integrals) for the moments of the asset price logarithm. These formulae are based on recent results on the Whittaker functions [1] and generalize similar formulae for the SABR and multiscale SABR models [2]. Using the option pricing formulae derived and the least squares method a calibration problem for the Hull and White model is formulated and solved numerically. The calibration problem uses as data a set of option prices. Experiments with real data are presented. The real data studied are those belonging to a time series of the USA S&P 500 index and of the prices of its European call and put options. The quality of the model and of the calibration procedure is established comparing the forecast option prices obtained using the calibrated model with the option prices actually observed in the financial market. The website: http://www.econ.univpm.it/recchioni/finance/w17 contains some auxiliary material including animations and interactive applications that helps the understanding of this paper. More general references to the work of the authors and of their coauthors in mathematical finance are available in the website: http://www.econ.univpm.it/recchioni/finance.展开更多
Stochastic volatility models are used in mathematical finance to describe the dynamics of asset prices. In these models, the asset price is modeled as a stochastic process depending on time implicitly defined by a sto...Stochastic volatility models are used in mathematical finance to describe the dynamics of asset prices. In these models, the asset price is modeled as a stochastic process depending on time implicitly defined by a stochastic differential Equation. The volatility of the asset price itself is modeled as a stochastic process depending on time whose dynamics is described by a stochastic differential Equation. The stochastic differential Equations for the asset price and for the volatility are coupled and together with the necessary initial conditions and correlation assumptions constitute the model. Note that the stochastic volatility is not observable in the financial markets. In order to use these models, for example, to evaluate prices of derivatives on the asset or to forecast asset prices, it is necessary to calibrate them. That is, it is necessary to estimate starting from a set of data the values of the initial volatility and of the unknown parameters that appear in the asset price/volatility dynamic Equations. These data usually are observations of the asset prices and/or of the prices of derivatives on the asset at some known times. We analyze some stochastic volatility models summarizing merits and weaknesses of each of them. We point out that these models are examples of stochastic state space models and present the main techniques used to calibrate them. A calibration problem for the Heston model is solved using the maximum likelihood method. Some numerical experiments about the calibration of the Heston model involving synthetic and real data are presented.展开更多
It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-D...It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-DC-MSV model were used to calculate the time-varying hedging ratios and compare the hedging performance. The Markov chain Monte Carlo( MCMC) method was used to estimate the parameters. The results showed that,there were obviously two economic states in Chinese financial market. Two models all did well in hedging,but the performance of MRS-DCMSV model was better. It could reduce risk by nearly 90%. Thus,in the hedging period,changing states is a factor that cannot be neglected.展开更多
A new stochastic volatility(SV)method to estimate the conditional value at risk(CVaR)is put forward.Firstly,it makes use of SV model to forecast the volatility of return.Secondly,the Markov chain Monte Carlo(MCMC...A new stochastic volatility(SV)method to estimate the conditional value at risk(CVaR)is put forward.Firstly,it makes use of SV model to forecast the volatility of return.Secondly,the Markov chain Monte Carlo(MCMC)simulation and Gibbs sampling have been used to estimate the parameters in the SV model.Thirdly,in this model,CVaR calculation is immediate.In this way,the SV-CVaR model overcomes the drawbacks of the generalized autoregressive conditional heteroscedasticity value at risk(GARCH-VaR)model.Empirical study suggests that this model is better than GARCH-VaR model in this field.展开更多
The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requireme...The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requirements arising from the said obligations. The main component inducing volatility in Capital is market sensitive Assets, such as Bonds and Equity. Bond and Equity prices in Sri Lanka are highly sensitive to macro-economic elements such as investor sentiment, political stability, policy environment, economic growth, fiscal stimulus, utility environment and in the case of Equity, societal sentiment on certain companies and industries. Therefore, if an entity is to accurately forecast the impact on solvency through asset valuation, the impact of macro-economic variables on asset pricing must be modelled mathematically. This paper explores mathematical, actuarial and statistical concepts such as Brownian motion, Markov Processes, Derivation and Integration as well as Probability theorems such as the Probability Density Function in determining the optimum mathematical model which depicts the accurate relationship between macro-economic variables and asset pricing.展开更多
In this paper, we consider the leverage effect on the CSI 300 Index yield and Hong Kong Hang Seng Index yield. It is modeled by the SV model with leverage. In this model, we compare the mainland and the Hong Kong stoc...In this paper, we consider the leverage effect on the CSI 300 Index yield and Hong Kong Hang Seng Index yield. It is modeled by the SV model with leverage. In this model, we compare the mainland and the Hong Kong stock market with stock market long-term effect, the degree on fluctuation reply and leverage effect so on. The analysis results show that the leverage stochastic volatility model can well fitting rate of return on the CSI300 index and the Hang Seng index in Hong Kong;The Shanghai and Shenzhen stock market volatility and leverage effect obviously stronger than the Hong Kong stock market.展开更多
基金National Natural Science Foundation of China(No.62073071)Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2021045)。
文摘An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is governed by Heston's stochastic volatility(SV)model.With the objective of maximizing the expected index utility of the terminal wealth of the insurance company,by using the classical tools of stochastic optimal control,the explicit expressions for optimal strategies and optimal value functions are derived.An interesting conclusion is found that it is better to buy one reinsurance than two under the assumption of this paper.Moreover,some numerical simulations and sensitivity analysis are provided.
文摘An explicit formula for the transition probability density function of the Hull and White stochastic volatility model in presence of nonzero correlation between the stochastic differentials of the Wiener processes on the right hand side of the model equations is presented. This formula gives the transition probability density function as a two dimensional integral of an explicitly known integrand. Previously an explicit formula for this probability density function was known only in the case of zero correlation. In the case of nonzero correlation from the formula for the transition probability density function we deduce formulae (expressed by integrals) for the price of European call and put options and closed form formulae (that do not involve integrals) for the moments of the asset price logarithm. These formulae are based on recent results on the Whittaker functions [1] and generalize similar formulae for the SABR and multiscale SABR models [2]. Using the option pricing formulae derived and the least squares method a calibration problem for the Hull and White model is formulated and solved numerically. The calibration problem uses as data a set of option prices. Experiments with real data are presented. The real data studied are those belonging to a time series of the USA S&P 500 index and of the prices of its European call and put options. The quality of the model and of the calibration procedure is established comparing the forecast option prices obtained using the calibrated model with the option prices actually observed in the financial market. The website: http://www.econ.univpm.it/recchioni/finance/w17 contains some auxiliary material including animations and interactive applications that helps the understanding of this paper. More general references to the work of the authors and of their coauthors in mathematical finance are available in the website: http://www.econ.univpm.it/recchioni/finance.
文摘Stochastic volatility models are used in mathematical finance to describe the dynamics of asset prices. In these models, the asset price is modeled as a stochastic process depending on time implicitly defined by a stochastic differential Equation. The volatility of the asset price itself is modeled as a stochastic process depending on time whose dynamics is described by a stochastic differential Equation. The stochastic differential Equations for the asset price and for the volatility are coupled and together with the necessary initial conditions and correlation assumptions constitute the model. Note that the stochastic volatility is not observable in the financial markets. In order to use these models, for example, to evaluate prices of derivatives on the asset or to forecast asset prices, it is necessary to calibrate them. That is, it is necessary to estimate starting from a set of data the values of the initial volatility and of the unknown parameters that appear in the asset price/volatility dynamic Equations. These data usually are observations of the asset prices and/or of the prices of derivatives on the asset at some known times. We analyze some stochastic volatility models summarizing merits and weaknesses of each of them. We point out that these models are examples of stochastic state space models and present the main techniques used to calibrate them. A calibration problem for the Heston model is solved using the maximum likelihood method. Some numerical experiments about the calibration of the Heston model involving synthetic and real data are presented.
基金National Natural Science Foundation of China(No.71401144)
文摘It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-DC-MSV model were used to calculate the time-varying hedging ratios and compare the hedging performance. The Markov chain Monte Carlo( MCMC) method was used to estimate the parameters. The results showed that,there were obviously two economic states in Chinese financial market. Two models all did well in hedging,but the performance of MRS-DCMSV model was better. It could reduce risk by nearly 90%. Thus,in the hedging period,changing states is a factor that cannot be neglected.
基金Sponsored by the National Natural Science Foundation of China(70571010)
文摘A new stochastic volatility(SV)method to estimate the conditional value at risk(CVaR)is put forward.Firstly,it makes use of SV model to forecast the volatility of return.Secondly,the Markov chain Monte Carlo(MCMC)simulation and Gibbs sampling have been used to estimate the parameters in the SV model.Thirdly,in this model,CVaR calculation is immediate.In this way,the SV-CVaR model overcomes the drawbacks of the generalized autoregressive conditional heteroscedasticity value at risk(GARCH-VaR)model.Empirical study suggests that this model is better than GARCH-VaR model in this field.
文摘The main business of Life Insurers is Long Term contractual obligations with a typical lifetime of 20 - 40 years. Therefore, the Solvency metric is defined by the adequacy of capital to service the cash flow requirements arising from the said obligations. The main component inducing volatility in Capital is market sensitive Assets, such as Bonds and Equity. Bond and Equity prices in Sri Lanka are highly sensitive to macro-economic elements such as investor sentiment, political stability, policy environment, economic growth, fiscal stimulus, utility environment and in the case of Equity, societal sentiment on certain companies and industries. Therefore, if an entity is to accurately forecast the impact on solvency through asset valuation, the impact of macro-economic variables on asset pricing must be modelled mathematically. This paper explores mathematical, actuarial and statistical concepts such as Brownian motion, Markov Processes, Derivation and Integration as well as Probability theorems such as the Probability Density Function in determining the optimum mathematical model which depicts the accurate relationship between macro-economic variables and asset pricing.
文摘In this paper, we consider the leverage effect on the CSI 300 Index yield and Hong Kong Hang Seng Index yield. It is modeled by the SV model with leverage. In this model, we compare the mainland and the Hong Kong stock market with stock market long-term effect, the degree on fluctuation reply and leverage effect so on. The analysis results show that the leverage stochastic volatility model can well fitting rate of return on the CSI300 index and the Hang Seng index in Hong Kong;The Shanghai and Shenzhen stock market volatility and leverage effect obviously stronger than the Hong Kong stock market.