We examine the impact of the short sell disclosure(SSD)regime on the stock lending market and investor behaviors,employing a staggered difference-indifference(DiD)methodology.Our research reveals that the introduction...We examine the impact of the short sell disclosure(SSD)regime on the stock lending market and investor behaviors,employing a staggered difference-indifference(DiD)methodology.Our research reveals that the introduction of the disclosure regime enhances market transparency,resulting in a diminished appeal of stock ownership in the lending market for active investors.This shift is accompanied by a reduction in information leakage risks and longer loan durations.Specifically,our analysis reveals a significant decrease in the risk of loan recall by 4.87%,accompanied by an average increase of 23.72%in loan duration for short selling activities.Furthermore,the cost associated with short-sell disclosure causes a decline in both lending supply and short demand.展开更多
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t...This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.展开更多
The emphasis of this study is on the practice of the Pooled Mean Group (PMG) estimators to investigate the magnitude of macroeconomic performances: Real Gross Domestic Product (RGDP), Foreign Exchange Rate (EX)...The emphasis of this study is on the practice of the Pooled Mean Group (PMG) estimators to investigate the magnitude of macroeconomic performances: Real Gross Domestic Product (RGDP), Foreign Exchange Rate (EX), and Deposit Interest Rate (DINT) affecting on the rate of financial sector returns in Southeast Asian Stock Markets including Stock Exchange Of Thailand (SET) index (Thailand), the Kuala Lumpur Composite Index (KLSE) index (Malaysia), Financial Times Share Index (FTSI) (Singapore), Philippine Stock Exchange (PSE), and the Jakarta Composite Index (JKSE) (Indonesia). The Panel Autoregressive Distributed Lag (Panel ARDL) is applied to model the relations. The study applies the Levin, Lin, and Chu (LLC) test (2002) and Im, Pesaran, and Shin (IPS) test (2003) to investigates a set of time series data to examine whether the determinants and the rate of financial sector returns contain a unit root, the next step is investigated the cointegration and causality relationship of the determinants of financial sector influencing on long-run rate of returns of financial sector in Southeast Asian Stock Markets.展开更多
Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile...Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price.展开更多
Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This stud...Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This study considered daily data from 4th January,1999 to 1st January,2014.Methods:This study opted EGARCH(Exponential Generalized Auto Regressive Conditional Heteroskedasticity)model for the purpose of analyzing asymmetric volatility spillover effects between stock and foreign exchange market.Results:The EGARCH analyses reveal bidirectional asymmetric volatility spillover between stock market and foreign exchange market of Pakistan,China,Hong Kong and Sri Lanka.The results reveal unidirectional transmission of volatility from stock market to foreign exchange market of India.The analysis reveals no evidence of volatility transmission between the two markets in reference to Japan.Conclusions:The result of this study provide valuable insights to economic policy makers for financial stability perspective and to investors regarding decision making in international portfolio and currency risk strategies.展开更多
Whether the stock market investors’ emotion can influence the stock market itself is one of the hot topic in financial research. In this paper, a method based on the heat of related keywords on Micro Blog is proposed...Whether the stock market investors’ emotion can influence the stock market itself is one of the hot topic in financial research. In this paper, a method based on the heat of related keywords on Micro Blog is proposed, as Micro Blog is an ideal source for capturing public opinions towards certain topic. We choose Shanghai Composite index as the research object, through correlation analysis, Granger causality analysis, and support vector machine classification, the results have shown that the keywords heat on micro blog can make a short-time prediction of stock market, and the keyword which expresses negative emotion have more powerful prediction ability.展开更多
This research explored the effects of the coronavirus disease(COVID-19)outbreak on stock price movements of China’s tourism industry by using an event study method.The results showed that the crisis negatively impact...This research explored the effects of the coronavirus disease(COVID-19)outbreak on stock price movements of China’s tourism industry by using an event study method.The results showed that the crisis negatively impacted tourism sector stocks.Further quantile regression analyses supported the non-linear relationship between the government’s responses and stock returns.The results present that the resurgence of the virus in Beijing did bring about a short-term negative impact on the tourism industry.The empirical results can be used for future researchers to conduct a comparative study of cultural differences concerning government responses to the COVID-19.展开更多
Background:The present study examines the short term dynamics and long term equilibrium relationship among the stock markets of 17 countries in Western Europe as well as the world market,using time series techniques.M...Background:The present study examines the short term dynamics and long term equilibrium relationship among the stock markets of 17 countries in Western Europe as well as the world market,using time series techniques.Methods:Weekly returns of market benchmark indices of the respective countries are used from the second week of 1995 to the fourth week of December 2013.Results:The study finds that the market returns of Austria,Belgium,the Netherlands,and France are relatively less dynamically interlinked as compared with Britain,Denmark,Finland,Germany,Portugal,Spain,Sweden,Switzerland,Greece,Ireland,Luxembourg,and Norway,which are quite dynamically interlinked within the region as well as with the MSCI world index.Conclusion:There exists a strong long run equilibrium relationship between the return distributions of the stock markets within the region.展开更多
This study investigates the dynamic connectedness between stock indices and the effect of economic policy uncertainty(EPU)in eight countries where COVID-19 was most widespread(China,Italy,France,Germany,Spain,Russia,t...This study investigates the dynamic connectedness between stock indices and the effect of economic policy uncertainty(EPU)in eight countries where COVID-19 was most widespread(China,Italy,France,Germany,Spain,Russia,the US,and the UK)by implementing the time-varying VAR(TVP-VAR)model for daily data over the period spanning from 01/01/2015 to 05/18/2020.Results showed that stock markets were highly connected during the entire period,but the dynamic spillovers reached unprecedented heights during the COVID-19 pandemic in the first quarter of 2020.Moreover,we found that the European stock markets(except Italy)transmitted more spillovers to all other stock markets than they received,primarily during the COVID-19 outbreak.Further analysis using a nonlinear framework showed that the dynamic connectedness was more pronounced for negative than for positive returns.Also,findings showed that the direction of the EPU effect on net connectedness changed during the pandemic onset,indicating that information spillovers from a given market may signal either good or bad news for other markets,depending on the prevailing economic situation.These results have important implications for individual investors,portfolio managers,policymakers,investment banks,and central banks.展开更多
To examine the interdependency and evolution of Pakistan’s stock market,we consider the cross-correlation coefficients of daily stock returns belonging to the blue chip Karachi stock exchange(KSE-100)index.Using the ...To examine the interdependency and evolution of Pakistan’s stock market,we consider the cross-correlation coefficients of daily stock returns belonging to the blue chip Karachi stock exchange(KSE-100)index.Using the minimum spanning tree network-based method,we extend the financial network literature by examining the topological properties of the network and generating six minimum spanning tree networks around three general elections in Pakistan.Our results reveal a star-like structure after the general elections of 2018 and before those in 2008,and a tree-like structure otherwise.We also highlight key nodes,the presence of different clusters,and compare the differences between the three elections.Additionally,the sectorial centrality measures reveal economic expansion in three industrial sectors—cement,oil and gas,and fertilizers.Moreover,a strong overall intermediary role of the fertilizer sector is observed.The results indicate a structural change in the stock market network due to general elections.Consequently,through this analysis,policy makers can focus on monitoring key nodes around general elections to estimate stock market stability,while local and international investors can form optimal diversification strategies.展开更多
In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literat...In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literature have focused on various ML,statistical,and deep learning-based methods used in stock market forecasting.However,no survey study has explored feature selection and extraction techniques for stock market forecasting.This survey presents a detailed analysis of 32 research works that use a combination of feature study and ML approaches in various stock market applications.We conduct a systematic search for articles in the Scopus and Web of Science databases for the years 2011–2022.We review a variety of feature selection and feature extraction approaches that have been successfully applied in the stock market analyses presented in the articles.We also describe the combination of feature analysis techniques and ML methods and evaluate their performance.Moreover,we present other survey articles,stock market input and output data,and analyses based on various factors.We find that correlation criteria,random forest,principal component analysis,and autoencoder are the most widely used feature selection and extraction techniques with the best prediction accuracy for various stock market applications.展开更多
This study examines herding behavior in the Pakistani Stock Market under different market conditions,focusing on the Ramadan effect and Crisis period by using data from 2004 to 2014.Two regression models of Christie a...This study examines herding behavior in the Pakistani Stock Market under different market conditions,focusing on the Ramadan effect and Crisis period by using data from 2004 to 2014.Two regression models of Christie and Huang(Financ Analysts J 51:31-37,1995)and Chang et al.,(J Bank Finance 24:1651-1679,2000)are used for herding estimations.Results based on daily stock data reveal that there is an absence of herding behavior during rising(up)and falling(down)market as well as during high and low volatility in market.While herding behavior is detected during low trading volume days.Yearly analysis shows that herding existed during 2005,2006 and 2007,while it is not evident during rest of the period.However,herding behavior is not detected during Ramadan.Furthermore,during financial crisis of 2007-08,Pakistani Stock Market exhibits herding behavior due to higher uncertainty and information asymmetry.展开更多
The purpose of this work is to study the principle fluctuation modes of the global stock market,which is regarded as a complex system.It is proposed that the systematic risk can be reflected by the trace calculated fr...The purpose of this work is to study the principle fluctuation modes of the global stock market,which is regarded as a complex system.It is proposed that the systematic risk can be reflected by the trace calculated from the cross-correlation matrix,and the integrity can be classified into clusters according to the plus-minus signs of the elements of the eigenvectors corresponding to several top largest eigenvalues whose total value accounts for more than 60 percent of the trace.The principle fluctuation modes of 30 stock markets are in the same direction in each year of 2005-2010.According to the classification criteria proposed here,the stock markets of the Americas,Europe and Asia & Oceania are automatically classified into different clusters,while Brazil,Russia and China are separated.展开更多
This study presents a thorough investigation of the relationship between the coronavirus disease 2019(COVID-19)and daily stock price changes.We use several types of COVID-19 patients as indicators for exploring whethe...This study presents a thorough investigation of the relationship between the coronavirus disease 2019(COVID-19)and daily stock price changes.We use several types of COVID-19 patients as indicators for exploring whether stock prices are significantly affected by COVID-19’s impact.In addition,using the Chinese stock market as an example,we are particularly interested in the psychological and industrial impacts of COVID-19 on the financial market.This study makes two contributions to the literature.First,from a theoretical perspective,it shows a novel quantitative relationship between the psychological response to the pandemic and stock prices.In addition,it depicts the mechanism of the shock to the stock market by pointing out the specific functional expression of the impulse reaction.To our knowledge,this is the first theoretical calculation of the impulse of a shock to the financial market.Second,this study empirically estimates the marginal effect of the COVID-19 pandemic on fluctuations in stock market returns.By controlling for stock fundamentals,this study also estimates diverse industrial responses to pandemic stock volatility.We confirm that the COVID-19 pandemic has caused panic in the stock market,which not only depresses stock prices but also inflates volatility in daily returns.Regarding the impulse of the shock,we identify the cumulative level of the pandemic variables as well as their incremental differences.As shown by our empirical results,the terms for these differences will eventually dominate the marginal effect,which confirms the fading impulse of the shock.Finally,this study highlights some important policy implications of stock market volatility and returns to work in the industry.展开更多
The paper embarks to investigate the relationship between currency risk and stock prices of the oil and natural gas exploitation industry in the value-weighted Hushen-300 stock market, by applying the standard Capital...The paper embarks to investigate the relationship between currency risk and stock prices of the oil and natural gas exploitation industry in the value-weighted Hushen-300 stock market, by applying the standard Capital Asset Pricing Model (CAPM) and nonlinear exchange rate exposure model to the Renminbi against US dollar. The results show that the currency exposure does vary in the oil-gas stock prices throughout the bull and bear market. The study suggests that the models of the equilibrium exchange rate exposure must be extended to considering the nonlinear exchange rate exposure, the regime periods of bull and bear market, and the industry types that is sensitive to the currency exposures. The nonlinear dynamic relationship between the exchange rate changes and the Chinese energy stock prices throughout the bull and bear market add to the recent empirical evidences that foreign exchange markets and stock markets are closely correlated.展开更多
This paper proposes a Markov-switching copula model to examine the presence of regime change in the time-varying dependence structure between oil price changes and stock market returns in six GCC countries. The margin...This paper proposes a Markov-switching copula model to examine the presence of regime change in the time-varying dependence structure between oil price changes and stock market returns in six GCC countries. The marginal distributions are assumed to follow a long-memory model while the copula parameters are supposed to evolve according to the Markov-switching process. Furthermore, we estimate the Value-at-Risk (VaR) based on the proposed approach. The empirical results provide evidence of three regime changes, representing precrisis, financial crisis and post-crisis, in the dependence structure between energy and GCC stock markets. In particular, in the pre- and post-crisis regimes, there is no dependence, while in the crisis regime, there is significant tail dependence. For OPEC countries, we find lower tail dependence whereas in non-OPEC countries, we see upper tail dependence. VaR experiments show that the Markov-switching time- varying copula model performs better than the time-varying copula model.展开更多
The study examined the mediating effect of corporate governance on the relationship between accounting information and stock market returns of listed entities on the Ghana Stock Exchange.The population of the study wa...The study examined the mediating effect of corporate governance on the relationship between accounting information and stock market returns of listed entities on the Ghana Stock Exchange.The population of the study was forty(40)listed entities from 2007-2019 with 520 firm-year observations.The study applied a panel regression model that takes unobserved individual heterogeneity and distributional heterogeneity into consideration.In addition,the study employed cross-section dependence test,Levin-Lin-Chu,ImPesaran,Pesaran,Kao,and Larsson cointegration test,fully modified ordinary least square(FMOLS),and dynamic ordinary least square(DOLS).The results of unit root test showed that all the variables are integrated at first difference.Moreover,the results of cointegration test revealed that accounting information variables were cointegrated in the long run.The result of FMOLS and DOLS further revealed that all the accounting information variables with the exception of OCFPS and NTA have a direct insignificant relationship with the stock market return.The study revealed that corporate governance which was proxied by board size also strengthens the relationship between TAT and stock market return and NTA and stock market return at 5%significant level under FMOLS and DOLS respectively.展开更多
Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision m...Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision model based on the forewarn of the market risk signal. Then, on probing into the structure and function of the realization of the model, the paper presents the method of data interface.展开更多
In this paper, three basic principles for computational stock market are proposed namely,“the Nearest_Time Principle” (NTP),“the Following Tendency Principle” (FTP),and “the Variational Principle on Difference of...In this paper, three basic principles for computational stock market are proposed namely,“the Nearest_Time Principle” (NTP),“the Following Tendency Principle” (FTP),and “the Variational Principle on Difference of Supply and Demand” (VPDSD). The issue, expression, mathematical description and applications of these principles are stated. These applications involve the use in neural networks, basic equations of computational stock market, and the prediction of equilibrium price of stocks etc.展开更多
With the gradual completion of the split-share structure reform,private placement has gradually become the mainstream of refinancing. One of the points that the practical and theoretical circles are widely concerned a...With the gradual completion of the split-share structure reform,private placement has gradually become the mainstream of refinancing. One of the points that the practical and theoretical circles are widely concerned about is that the private placement price is often higher than the market price at the time of the private placement. High discounts are often accompanied by the transmission of benefits,and the increase in insider information will lead to the risk of a stock market crash? This paper intends to use the data of A-share listed companies from 2006 to 2015 to empirically study the relationship between the discount on private placements and the risk of stock market crash. At the same time,this paper examines whether the degree of information asymmetry plays a regulatory role in the relationship between the discount on private placements and the risk of stock market crash. This paper provides a certain reference for the regulatory authorities to improve the relevant laws and regulations in the private placement,and to provide a certain reference for the protection of the interests of small and medium-sized investors.展开更多
文摘We examine the impact of the short sell disclosure(SSD)regime on the stock lending market and investor behaviors,employing a staggered difference-indifference(DiD)methodology.Our research reveals that the introduction of the disclosure regime enhances market transparency,resulting in a diminished appeal of stock ownership in the lending market for active investors.This shift is accompanied by a reduction in information leakage risks and longer loan durations.Specifically,our analysis reveals a significant decrease in the risk of loan recall by 4.87%,accompanied by an average increase of 23.72%in loan duration for short selling activities.Furthermore,the cost associated with short-sell disclosure causes a decline in both lending supply and short demand.
文摘This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.
文摘The emphasis of this study is on the practice of the Pooled Mean Group (PMG) estimators to investigate the magnitude of macroeconomic performances: Real Gross Domestic Product (RGDP), Foreign Exchange Rate (EX), and Deposit Interest Rate (DINT) affecting on the rate of financial sector returns in Southeast Asian Stock Markets including Stock Exchange Of Thailand (SET) index (Thailand), the Kuala Lumpur Composite Index (KLSE) index (Malaysia), Financial Times Share Index (FTSI) (Singapore), Philippine Stock Exchange (PSE), and the Jakarta Composite Index (JKSE) (Indonesia). The Panel Autoregressive Distributed Lag (Panel ARDL) is applied to model the relations. The study applies the Levin, Lin, and Chu (LLC) test (2002) and Im, Pesaran, and Shin (IPS) test (2003) to investigates a set of time series data to examine whether the determinants and the rate of financial sector returns contain a unit root, the next step is investigated the cointegration and causality relationship of the determinants of financial sector influencing on long-run rate of returns of financial sector in Southeast Asian Stock Markets.
文摘Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price.
文摘Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This study considered daily data from 4th January,1999 to 1st January,2014.Methods:This study opted EGARCH(Exponential Generalized Auto Regressive Conditional Heteroskedasticity)model for the purpose of analyzing asymmetric volatility spillover effects between stock and foreign exchange market.Results:The EGARCH analyses reveal bidirectional asymmetric volatility spillover between stock market and foreign exchange market of Pakistan,China,Hong Kong and Sri Lanka.The results reveal unidirectional transmission of volatility from stock market to foreign exchange market of India.The analysis reveals no evidence of volatility transmission between the two markets in reference to Japan.Conclusions:The result of this study provide valuable insights to economic policy makers for financial stability perspective and to investors regarding decision making in international portfolio and currency risk strategies.
文摘Whether the stock market investors’ emotion can influence the stock market itself is one of the hot topic in financial research. In this paper, a method based on the heat of related keywords on Micro Blog is proposed, as Micro Blog is an ideal source for capturing public opinions towards certain topic. We choose Shanghai Composite index as the research object, through correlation analysis, Granger causality analysis, and support vector machine classification, the results have shown that the keywords heat on micro blog can make a short-time prediction of stock market, and the keyword which expresses negative emotion have more powerful prediction ability.
基金This research was supported by the Jiangxi Humanities and Social Sciences Project of University(NO.JJ20125).
文摘This research explored the effects of the coronavirus disease(COVID-19)outbreak on stock price movements of China’s tourism industry by using an event study method.The results showed that the crisis negatively impacted tourism sector stocks.Further quantile regression analyses supported the non-linear relationship between the government’s responses and stock returns.The results present that the resurgence of the virus in Beijing did bring about a short-term negative impact on the tourism industry.The empirical results can be used for future researchers to conduct a comparative study of cultural differences concerning government responses to the COVID-19.
文摘Background:The present study examines the short term dynamics and long term equilibrium relationship among the stock markets of 17 countries in Western Europe as well as the world market,using time series techniques.Methods:Weekly returns of market benchmark indices of the respective countries are used from the second week of 1995 to the fourth week of December 2013.Results:The study finds that the market returns of Austria,Belgium,the Netherlands,and France are relatively less dynamically interlinked as compared with Britain,Denmark,Finland,Germany,Portugal,Spain,Sweden,Switzerland,Greece,Ireland,Luxembourg,and Norway,which are quite dynamically interlinked within the region as well as with the MSCI world index.Conclusion:There exists a strong long run equilibrium relationship between the return distributions of the stock markets within the region.
文摘This study investigates the dynamic connectedness between stock indices and the effect of economic policy uncertainty(EPU)in eight countries where COVID-19 was most widespread(China,Italy,France,Germany,Spain,Russia,the US,and the UK)by implementing the time-varying VAR(TVP-VAR)model for daily data over the period spanning from 01/01/2015 to 05/18/2020.Results showed that stock markets were highly connected during the entire period,but the dynamic spillovers reached unprecedented heights during the COVID-19 pandemic in the first quarter of 2020.Moreover,we found that the European stock markets(except Italy)transmitted more spillovers to all other stock markets than they received,primarily during the COVID-19 outbreak.Further analysis using a nonlinear framework showed that the dynamic connectedness was more pronounced for negative than for positive returns.Also,findings showed that the direction of the EPU effect on net connectedness changed during the pandemic onset,indicating that information spillovers from a given market may signal either good or bad news for other markets,depending on the prevailing economic situation.These results have important implications for individual investors,portfolio managers,policymakers,investment banks,and central banks.
文摘To examine the interdependency and evolution of Pakistan’s stock market,we consider the cross-correlation coefficients of daily stock returns belonging to the blue chip Karachi stock exchange(KSE-100)index.Using the minimum spanning tree network-based method,we extend the financial network literature by examining the topological properties of the network and generating six minimum spanning tree networks around three general elections in Pakistan.Our results reveal a star-like structure after the general elections of 2018 and before those in 2008,and a tree-like structure otherwise.We also highlight key nodes,the presence of different clusters,and compare the differences between the three elections.Additionally,the sectorial centrality measures reveal economic expansion in three industrial sectors—cement,oil and gas,and fertilizers.Moreover,a strong overall intermediary role of the fertilizer sector is observed.The results indicate a structural change in the stock market network due to general elections.Consequently,through this analysis,policy makers can focus on monitoring key nodes around general elections to estimate stock market stability,while local and international investors can form optimal diversification strategies.
基金funded by The University of Groningen and Prospect Burma organization.
文摘In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literature have focused on various ML,statistical,and deep learning-based methods used in stock market forecasting.However,no survey study has explored feature selection and extraction techniques for stock market forecasting.This survey presents a detailed analysis of 32 research works that use a combination of feature study and ML approaches in various stock market applications.We conduct a systematic search for articles in the Scopus and Web of Science databases for the years 2011–2022.We review a variety of feature selection and feature extraction approaches that have been successfully applied in the stock market analyses presented in the articles.We also describe the combination of feature analysis techniques and ML methods and evaluate their performance.Moreover,we present other survey articles,stock market input and output data,and analyses based on various factors.We find that correlation criteria,random forest,principal component analysis,and autoencoder are the most widely used feature selection and extraction techniques with the best prediction accuracy for various stock market applications.
文摘This study examines herding behavior in the Pakistani Stock Market under different market conditions,focusing on the Ramadan effect and Crisis period by using data from 2004 to 2014.Two regression models of Christie and Huang(Financ Analysts J 51:31-37,1995)and Chang et al.,(J Bank Finance 24:1651-1679,2000)are used for herding estimations.Results based on daily stock data reveal that there is an absence of herding behavior during rising(up)and falling(down)market as well as during high and low volatility in market.While herding behavior is detected during low trading volume days.Yearly analysis shows that herding existed during 2005,2006 and 2007,while it is not evident during rest of the period.However,herding behavior is not detected during Ramadan.Furthermore,during financial crisis of 2007-08,Pakistani Stock Market exhibits herding behavior due to higher uncertainty and information asymmetry.
基金Supported by the National Natural Science Foundation of China(Nos 71103179,71102129,10835005)Program for Young Innovative Research Team in China University of Political Science and Law,2010 Fund Project under the Ministry of Education of China for youth(10YJC630425)Generalized Virtual Economy Fund(GX2011-1019(Y)).
文摘The purpose of this work is to study the principle fluctuation modes of the global stock market,which is regarded as a complex system.It is proposed that the systematic risk can be reflected by the trace calculated from the cross-correlation matrix,and the integrity can be classified into clusters according to the plus-minus signs of the elements of the eigenvectors corresponding to several top largest eigenvalues whose total value accounts for more than 60 percent of the trace.The principle fluctuation modes of 30 stock markets are in the same direction in each year of 2005-2010.According to the classification criteria proposed here,the stock markets of the Americas,Europe and Asia & Oceania are automatically classified into different clusters,while Brazil,Russia and China are separated.
文摘This study presents a thorough investigation of the relationship between the coronavirus disease 2019(COVID-19)and daily stock price changes.We use several types of COVID-19 patients as indicators for exploring whether stock prices are significantly affected by COVID-19’s impact.In addition,using the Chinese stock market as an example,we are particularly interested in the psychological and industrial impacts of COVID-19 on the financial market.This study makes two contributions to the literature.First,from a theoretical perspective,it shows a novel quantitative relationship between the psychological response to the pandemic and stock prices.In addition,it depicts the mechanism of the shock to the stock market by pointing out the specific functional expression of the impulse reaction.To our knowledge,this is the first theoretical calculation of the impulse of a shock to the financial market.Second,this study empirically estimates the marginal effect of the COVID-19 pandemic on fluctuations in stock market returns.By controlling for stock fundamentals,this study also estimates diverse industrial responses to pandemic stock volatility.We confirm that the COVID-19 pandemic has caused panic in the stock market,which not only depresses stock prices but also inflates volatility in daily returns.Regarding the impulse of the shock,we identify the cumulative level of the pandemic variables as well as their incremental differences.As shown by our empirical results,the terms for these differences will eventually dominate the marginal effect,which confirms the fading impulse of the shock.Finally,this study highlights some important policy implications of stock market volatility and returns to work in the industry.
文摘The paper embarks to investigate the relationship between currency risk and stock prices of the oil and natural gas exploitation industry in the value-weighted Hushen-300 stock market, by applying the standard Capital Asset Pricing Model (CAPM) and nonlinear exchange rate exposure model to the Renminbi against US dollar. The results show that the currency exposure does vary in the oil-gas stock prices throughout the bull and bear market. The study suggests that the models of the equilibrium exchange rate exposure must be extended to considering the nonlinear exchange rate exposure, the regime periods of bull and bear market, and the industry types that is sensitive to the currency exposures. The nonlinear dynamic relationship between the exchange rate changes and the Chinese energy stock prices throughout the bull and bear market add to the recent empirical evidences that foreign exchange markets and stock markets are closely correlated.
文摘This paper proposes a Markov-switching copula model to examine the presence of regime change in the time-varying dependence structure between oil price changes and stock market returns in six GCC countries. The marginal distributions are assumed to follow a long-memory model while the copula parameters are supposed to evolve according to the Markov-switching process. Furthermore, we estimate the Value-at-Risk (VaR) based on the proposed approach. The empirical results provide evidence of three regime changes, representing precrisis, financial crisis and post-crisis, in the dependence structure between energy and GCC stock markets. In particular, in the pre- and post-crisis regimes, there is no dependence, while in the crisis regime, there is significant tail dependence. For OPEC countries, we find lower tail dependence whereas in non-OPEC countries, we see upper tail dependence. VaR experiments show that the Markov-switching time- varying copula model performs better than the time-varying copula model.
文摘The study examined the mediating effect of corporate governance on the relationship between accounting information and stock market returns of listed entities on the Ghana Stock Exchange.The population of the study was forty(40)listed entities from 2007-2019 with 520 firm-year observations.The study applied a panel regression model that takes unobserved individual heterogeneity and distributional heterogeneity into consideration.In addition,the study employed cross-section dependence test,Levin-Lin-Chu,ImPesaran,Pesaran,Kao,and Larsson cointegration test,fully modified ordinary least square(FMOLS),and dynamic ordinary least square(DOLS).The results of unit root test showed that all the variables are integrated at first difference.Moreover,the results of cointegration test revealed that accounting information variables were cointegrated in the long run.The result of FMOLS and DOLS further revealed that all the accounting information variables with the exception of OCFPS and NTA have a direct insignificant relationship with the stock market return.The study revealed that corporate governance which was proxied by board size also strengthens the relationship between TAT and stock market return and NTA and stock market return at 5%significant level under FMOLS and DOLS respectively.
文摘Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision model based on the forewarn of the market risk signal. Then, on probing into the structure and function of the realization of the model, the paper presents the method of data interface.
文摘In this paper, three basic principles for computational stock market are proposed namely,“the Nearest_Time Principle” (NTP),“the Following Tendency Principle” (FTP),and “the Variational Principle on Difference of Supply and Demand” (VPDSD). The issue, expression, mathematical description and applications of these principles are stated. These applications involve the use in neural networks, basic equations of computational stock market, and the prediction of equilibrium price of stocks etc.
文摘With the gradual completion of the split-share structure reform,private placement has gradually become the mainstream of refinancing. One of the points that the practical and theoretical circles are widely concerned about is that the private placement price is often higher than the market price at the time of the private placement. High discounts are often accompanied by the transmission of benefits,and the increase in insider information will lead to the risk of a stock market crash? This paper intends to use the data of A-share listed companies from 2006 to 2015 to empirically study the relationship between the discount on private placements and the risk of stock market crash. At the same time,this paper examines whether the degree of information asymmetry plays a regulatory role in the relationship between the discount on private placements and the risk of stock market crash. This paper provides a certain reference for the regulatory authorities to improve the relevant laws and regulations in the private placement,and to provide a certain reference for the protection of the interests of small and medium-sized investors.