期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Comparative Analysis of Machine Learning Models for Stock Price Prediction: Leveraging LSTM for Real-Time Forecasting
1
作者 Bijay Gautam Sanif Kandel +1 位作者 Manoj Shrestha Shrawan Thakur 《Journal of Computer and Communications》 2024年第8期52-80,共29页
The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agil... The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agile Scrum and the Obtain, Scrub, Explore, Model, and iNterpret (OSEMN) methodology. Six machine learning models, namely Linear Forecast, Naive Forecast, Simple Moving Average with weekly window (SMA 5), Simple Moving Average with monthly window (SMA 20), Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM), are compared and evaluated through Mean Absolute Error (MAE), with the LSTM model performing the best, showcasing its potential for practical financial applications. A Django web application “Predict It” is developed to implement the LSTM model. Ethical concerns related to predictive modeling in finance are addressed. Data quality, algorithm choice, feature engineering, and preprocessing techniques are emphasized for better model performance. The research acknowledges limitations and suggests future research directions, aiming to equip investors and financial professionals with reliable predictive models for dynamic markets. 展开更多
关键词 stock price Prediction Machine Learning LSTM ARIMA Mean Squared Error
下载PDF
Stock Price Prediction Based on the Bi-GRU-Attention Model
2
作者 Yaojun Zhang Gilbert M. Tumibay 《Journal of Computer and Communications》 2024年第4期72-85,共14页
The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest... The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest for further in-depth mining and research. Mathematical statistics methods struggle to deal with nonlinear relationships in practical applications, making it difficult to explore deep information about stocks. Meanwhile, machine learning methods, particularly neural network models and composite models, which have achieved outstanding results in other fields, are being applied to the stock market with significant results. However, researchers have found that these methods do not grasp the essential information of the data as well as expected. In response to these issues, researchers are exploring better neural network models and combining them with other methods to analyze stock data. Thus, this paper proposes the ABiGRU composite model, which combines the attention mechanism and bidirectional gated recurrent unit (GRU) that can effectively extract data features for stock price prediction research. Models such as LSTM, GRU, and Bi-LSTM are selected for comparative experiments. To ensure the credibility and representativeness of the research data, daily stock price indices of BYD are chosen for closing price prediction studies across different models. The results show that the ABiGRU model has a lower prediction error and better fitting effect on three index-based stock prices, enhancing the learning efficiency of the neural network model and demonstrating good prediction stability. This suggests that the ABiGRU model is highly adaptable for stock price prediction. 展开更多
关键词 Machine Learning Attention Mechanism LSTM Neural Network ABiGRU Model stock price Prediction
下载PDF
ARIMA and Facebook Prophet Model in Google Stock Price Prediction 被引量:2
3
作者 Beijia Jin Shuning Gao Zheng Tao 《Proceedings of Business and Economic Studies》 2022年第5期60-66,共7页
We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models... We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models’predictions.We first examine the stationary of the dataset and use ARIMA(0,1,1)to make predictions about the stock price during the pandemic,then we train the Prophet model using the stock price before January 1,2021,and predict the stock price after January 1,2021,to present.We also make a comparison of the prediction graphs of the two models.The empirical results show that the ARIMA model has a better performance in predicting Google’s stock price during the pandemic. 展开更多
关键词 ARIMA model Facebook Prophet model stock price prediction Financial market Time series
下载PDF
Stock Price Prediction Using Predictive Error Compensation Wavelet Neural Networks
4
作者 Ajla Kulaglic Burak Berk Ustundag 《Computers, Materials & Continua》 SCIE EI 2021年第9期3577-3593,共17页
:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that i... :Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that improves the prediction of next day closing prices.In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs.An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence.The performance of the proposed model is evaluated using six different stock data samples in the New York stock exchange.The results have demonstrated significant improvement in forecasting accuracy in all cases when the second network is used in accordance with the first one by adding the outputs.The RMSE error is 33%improved when the proposed PEC-WNN model is used compared to the Long ShortTerm Memory(LSTM)model.Furthermore,through the analysis of training mechanisms,we found that using the updated training the performance of the proposed model is improved.The contribution of this study is the applicability of simultaneously different time frames as inputs.Cascading the predictive error compensation not only reduces the error rate but also helps in avoiding overfitting problems. 展开更多
关键词 Predictive error compensating wavelet neural network time series prediction stock price prediction neural networks wavelet transform
下载PDF
The Prediction of Stock Prices Based on PCA and BP Neural Networks
5
作者 Xiaoping Yang 《Chinese Business Review》 2005年第5期64-68,共5页
There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is use... There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is used to deal with a set of variables as the input of a BP Neural Network. Therefore, not only is the number of variables less, but also most of the information of original variables is kept. Then, the BP Neural Network is established to analyze and predict stock prices. Finally, the analysis of Chinese stock market illustrates that the method predicting stock prices is satisfying and feasible. 展开更多
关键词 BP neural networks prediction PCA stock prices
下载PDF
ARIMA Model in the Application of Shanghai and Shenzhen Stock Index
6
作者 Shichang Shen Yue Shen 《Applied Mathematics》 2016年第3期171-176,共6页
In the paper, based on the data of Shanghai and Shenzhen 300 stock index in 2011, the ARIMA model was established by using Eviews 6, and the historical trend of stock price was found out. The model was used to provide... In the paper, based on the data of Shanghai and Shenzhen 300 stock index in 2011, the ARIMA model was established by using Eviews 6, and the historical trend of stock price was found out. The model was used to provide a reference for the investors. 展开更多
关键词 Time Series ARIMA stock price Prediction
下载PDF
Application of LSTM model optimized by individual-ordering- basedadaptivegeneticalgorithmin stock forecasting
7
作者 Yong He Xiaohua Zeng +1 位作者 Huan Li Wenhong Wei 《International Journal of Intelligent Computing and Cybernetics》 EI 2023年第2期277-294,共18页
Purpose-To improve the accuracy of stock price trend prediction in the field of quantitative financial trading,this paper takes the prediction accuracy as the goal and avoid the enormous number of network structures a... Purpose-To improve the accuracy of stock price trend prediction in the field of quantitative financial trading,this paper takes the prediction accuracy as the goal and avoid the enormous number of network structures and hyperparameter adjustments of long-short-term memory(LSTM).Design/methodology/approach-In this paper,an adaptive genetic algorithm based on individual ordering is used to optimize the network structure and hyperparameters of the LSTM neural network automatically.Findings-The simulation results show that the accuracy of the rise and fall of the stock outperform than the model with LSTM only as well as other machine learning models.Furthermore,the efficiency of parameter adjustment is greatly higher than other hyperparameter optimization methods.Originality/value-(1)The AGA-LSTM algorithm is used to input various hyperparameter combinations into genetic algorithm to find the best hyperparameter combination.Compared with other models,it has higher accuracy in predicting the up and down trend of stock prices in the next day.(2)Adopting real coding,elitist preservation and self-adaptive adjustment of crossover and mutation probability based on individual ordering in the part of genetic algorithm,the algorithm is computationally efficient and the results are more likely to converge to the global optimum. 展开更多
关键词 stock price prediction Long-short-term memory Adaptive genetic algorithm Machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部