Phospholipids (PLs) in the form of nanostructures are widely employed as a lubricant and antimicrobial agent. The cartilage (AC) surface was characterized using wettability test fresh and depleted AC samples. Cartilag...Phospholipids (PLs) in the form of nanostructures are widely employed as a lubricant and antimicrobial agent. The cartilage (AC) surface was characterized using wettability test fresh and depleted AC samples. Cartilage wet surface exposure to air causes increase </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">surface wettability from 0 to 104 degrees. Effect is explained by flip-flop of the PLs molecules in membrane. The hydrophilic and hydrophobic character of cartilage was determined. Microscopic image of PLs bilayers adsorbed on the surface of pleural tissues and human stomach will be compared with cartilage tissue.展开更多
文摘Phospholipids (PLs) in the form of nanostructures are widely employed as a lubricant and antimicrobial agent. The cartilage (AC) surface was characterized using wettability test fresh and depleted AC samples. Cartilage wet surface exposure to air causes increase </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">surface wettability from 0 to 104 degrees. Effect is explained by flip-flop of the PLs molecules in membrane. The hydrophilic and hydrophobic character of cartilage was determined. Microscopic image of PLs bilayers adsorbed on the surface of pleural tissues and human stomach will be compared with cartilage tissue.