Stomatal density and size affect plant water use efficiency, photosynthsis rate and yield. The objective of this study was to gain insights into the variation and genetic basis of stomatal density and size during grai...Stomatal density and size affect plant water use efficiency, photosynthsis rate and yield. The objective of this study was to gain insights into the variation and genetic basis of stomatal density and size during grain filling under drought stress(DS) and well-watered(WW) conditions. The doubled haploid population derived from a cross of wheat cultivars Hanxuan 10(H10), a female parent, and Lumai 14(L14), a male parent, was used for phenotyping at the heading, flowering, and mid- and late grain filling stages along with established amplified fragment length polymorphism(AFLP) and simple sequence repeat(SSR) markers. The stomatal density of doubled haploid(DH) lines was gradually increased, while the stomatal lengths and widths were gradually decreased during grain filling stage. Twenty additive QTLs and 19 pairs of epistatic QTLs for the 3 traits were identified under DS. The other 20 QTLs and 25 pairs epistatic QTLs were obtained under WW. Most QTLs made more than 10% contributions to the total phenotypic variations at one growth stage under DS or WW. Furthermore, QTLs for stomatal density near Xwmc74 and Xgwm291 located on chromosome 5A were tightly linked to previously reported QTLs regulating total number of spikelets per spike, number of sterile spikelets per spike and proportion of fertile spikelets per spike. Qsw-2D-1 was detected across stages, and was in the same marker region as a major QTL for plant height, QPH.cgb-2D.1. These indicate that these QTLs on chromosomes 5A and 2D are involved in regulating these agronomic traits and are valuable for molecular breeding.展开更多
In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon i...In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon isotope ratio( δ^(13)C),leaf nitrogen content(LNC) and stomatal density(SD) with altitude variation in northsubtropical humid mountain climate zone of China.The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m,whereas leafδ^(13)C exhibited a significantly negative correlation with the altitude.Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment,suggesting that the pattern of increasing δ^(13)C with the altitude cannot be generalized.The negative correlation between δ ^(13)C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude.Furthermore,there was a remarkable negative correlation between leaf δ ^(13)C and LNC.One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ ^(13)C.The significant negative correlation between leaf δ ^(13)C and SD over altitudes was also found in the present study,indicating that increases in SD with altitude would reduce,rather than enhance plant δ^(13)C values.展开更多
Variations in leaf morphology and stomatal characteristics have been extensively studied at both inter- and intraspecific levels although not explicitly in the context of paper birch (Betula papyrifera Marsh) populati...Variations in leaf morphology and stomatal characteristics have been extensively studied at both inter- and intraspecific levels although not explicitly in the context of paper birch (Betula papyrifera Marsh) populations. The birch populations might have developed the leaf variations that allowed them to adapt to a wide climatic gradient. Therefore, in this study we examined variations in the leaf morphological and stomatal characteristics of sixteen paper birch populations collected across Canada and grown in a common garden. We also examined the relationship between these leaf characteristics and the climate of the population’s origin. Significant genotypic differences were found in the leaf characteristics measured among the birch populations. Thus, we expected that the observed leaf variations may be partly explained as natural diversity in the birch due to differences in environment of origin. We noticed that along mean annual precipitation and aridity gradients, hair density on leaf adaxial surface had decreased whereas stomatal density increased significantly. Our results showed that the populations with larger leaf area and specific leaf area had higher hair density but low stomatal density. These leaf characteristics provided a structural basis in reducing water loss through leaves and increasing water use efficiency. A trade-off between stomatal area and density resulted in this study might be a strategy of the birch to balance stomatal conductance in decreased precipitation.展开更多
Tree species in coastal forests may exhibit specialization or plasticity in coping with drought through changes in their stomatal morphology or activity, allowing for a balance between gas exchange and water loss in a...Tree species in coastal forests may exhibit specialization or plasticity in coping with drought through changes in their stomatal morphology or activity, allowing for a balance between gas exchange and water loss in a periodically stressful environment. To examine these responses, we sought to answer two primary research questions: a) how is variation in B. simaruba’s stomatal traits partitioned across hierarchical levels, i.e., site, tree, and leaf;and b) is variation in stomatal traits an integrated response to physiological stress expressed across the habitat gradient of Florida Keys forests? At eight sites distributed throughout the Keys, five leaves were collected from three mature trees for stomatal analysis. Leaf carbon stable isotope ratio (δ13C) was determined to infer the changes in water use efficiency caused by physiological stress experienced by each tree. The results showed that substantial proportions of the total variance in three traits (stomatal density, stomatal size, and δ13C) were observed at all levels, suggesting that processes operating at each scale are important in determining trait values. A significant negative correlation between stomatal density and size across scales was observed. Path model analysis showed that environmental variables, distance to ground water and ground water salinity, affect leaf δ13C indirectly, via its effects on stomatal traits, not directly to leaf δ13C. Therefore, the combination of small and densely distributed stomata seems to represent a strategy that allows B. simaruba to conserve water under conditions of physiological drought induced by either higher ground water salinity or flooding stress at very low elevation.展开更多
Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identi...Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identified a drought-responsive zinc finger protein,ZOS7,as highly expressed in Shanlandao upland rice.However,the function of this gene in controlling drought tolerance remains largely unexplored.In this study,we found that overexpressing ZOS7,a drought-responsive zinc finger protein,in rice increased biomass and yield under drought stress.Co-overexpressing ZOS7 and MYB60,encoding a protein with which ZOS7 interacted,intensified the yield increase.ZOS7 and MYB60 appear to form a module that confers drought tolerance by regulating stomatal density and wax biosynthesis.The ZOS7-MYB60module could be used in molecular breeding for drought tolerance in rice.展开更多
The relationship between the stomatal density of five woody plants endemic to China, i.e. Eucommia ulmoides, Quercus liaotungensis, Q. glandulifera var. brevipetiolata, Cyclocarya paliurus and Ficus heteromorpha, and ...The relationship between the stomatal density of five woody plants endemic to China, i.e. Eucommia ulmoides, Quercus liaotungensis, Q. glandulifera var. brevipetiolata, Cyclocarya paliurus and Ficus heteromorpha, and the atmospheric CO-2 concentrations was studied by observations on leaves of the herbarium-stored specimens(1920s-1990s). The results showed that the stomatal density in Eucommia ulmoides, Quercus liaotungensis and Q. glandulifera% var. brevipetiolata decreased significantly in response to the elevated atmospheric CO-2 concentrations, while in Cyclocarya paliurus it decreased slightly and in Ficus heteromorpha there were no responses.展开更多
Bio-water saving is to increase water use efficiency of crops or crop yield per unit of water input. Plant water use efficiency is determined by photosynthesis and transpiration, for both of which stomata are crucial....Bio-water saving is to increase water use efficiency of crops or crop yield per unit of water input. Plant water use efficiency is determined by photosynthesis and transpiration, for both of which stomata are crucial. Stomata are pores on leaf epidermis for both water and carbon dioxide fluxes that are controlled by two major factors: stomatal behavior and density. Stomatal behavior has been the focus of intensive research, while less attention has been paid to stomatal density. Recently, a number of genes controlling stomatal development have been identified. This review summarizes the recent progress on the genes regulating stomatal density, and discusses the role of stomatal density in plant water use efficiency and the possibility to increase plant water use efficiency, hence bio-water saving by genetically manipulating stomatal density.展开更多
基金supported by the National Science and Technology Major Projects for Cultivation of New Transgenic Varieties,Ministry of Agriculture of China(2014ZX0800203B-003)the Natural Science Foundation of Shanxi Province,China(2014011004-3)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(20121403110005)a Program of Consultative Group for International Agricultural Research(CGIAR)Project,Generation Challenge Programme(G7010.02.01)
文摘Stomatal density and size affect plant water use efficiency, photosynthsis rate and yield. The objective of this study was to gain insights into the variation and genetic basis of stomatal density and size during grain filling under drought stress(DS) and well-watered(WW) conditions. The doubled haploid population derived from a cross of wheat cultivars Hanxuan 10(H10), a female parent, and Lumai 14(L14), a male parent, was used for phenotyping at the heading, flowering, and mid- and late grain filling stages along with established amplified fragment length polymorphism(AFLP) and simple sequence repeat(SSR) markers. The stomatal density of doubled haploid(DH) lines was gradually increased, while the stomatal lengths and widths were gradually decreased during grain filling stage. Twenty additive QTLs and 19 pairs of epistatic QTLs for the 3 traits were identified under DS. The other 20 QTLs and 25 pairs epistatic QTLs were obtained under WW. Most QTLs made more than 10% contributions to the total phenotypic variations at one growth stage under DS or WW. Furthermore, QTLs for stomatal density near Xwmc74 and Xgwm291 located on chromosome 5A were tightly linked to previously reported QTLs regulating total number of spikelets per spike, number of sterile spikelets per spike and proportion of fertile spikelets per spike. Qsw-2D-1 was detected across stages, and was in the same marker region as a major QTL for plant height, QPH.cgb-2D.1. These indicate that these QTLs on chromosomes 5A and 2D are involved in regulating these agronomic traits and are valuable for molecular breeding.
基金supported by Hunan Province Natural Science Foundation (No.2015JJ2062)the State Key Laboratory of Soil and Sustainable Agriculture (Grant No.Y412201416)the Scientific Research Fund of Hunan Provincial Education Department (Grant No.14A054)
文摘In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon isotope ratio( δ^(13)C),leaf nitrogen content(LNC) and stomatal density(SD) with altitude variation in northsubtropical humid mountain climate zone of China.The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m,whereas leafδ^(13)C exhibited a significantly negative correlation with the altitude.Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment,suggesting that the pattern of increasing δ^(13)C with the altitude cannot be generalized.The negative correlation between δ ^(13)C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude.Furthermore,there was a remarkable negative correlation between leaf δ ^(13)C and LNC.One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ ^(13)C.The significant negative correlation between leaf δ ^(13)C and SD over altitudes was also found in the present study,indicating that increases in SD with altitude would reduce,rather than enhance plant δ^(13)C values.
文摘Variations in leaf morphology and stomatal characteristics have been extensively studied at both inter- and intraspecific levels although not explicitly in the context of paper birch (Betula papyrifera Marsh) populations. The birch populations might have developed the leaf variations that allowed them to adapt to a wide climatic gradient. Therefore, in this study we examined variations in the leaf morphological and stomatal characteristics of sixteen paper birch populations collected across Canada and grown in a common garden. We also examined the relationship between these leaf characteristics and the climate of the population’s origin. Significant genotypic differences were found in the leaf characteristics measured among the birch populations. Thus, we expected that the observed leaf variations may be partly explained as natural diversity in the birch due to differences in environment of origin. We noticed that along mean annual precipitation and aridity gradients, hair density on leaf adaxial surface had decreased whereas stomatal density increased significantly. Our results showed that the populations with larger leaf area and specific leaf area had higher hair density but low stomatal density. These leaf characteristics provided a structural basis in reducing water loss through leaves and increasing water use efficiency. A trade-off between stomatal area and density resulted in this study might be a strategy of the birch to balance stomatal conductance in decreased precipitation.
文摘Tree species in coastal forests may exhibit specialization or plasticity in coping with drought through changes in their stomatal morphology or activity, allowing for a balance between gas exchange and water loss in a periodically stressful environment. To examine these responses, we sought to answer two primary research questions: a) how is variation in B. simaruba’s stomatal traits partitioned across hierarchical levels, i.e., site, tree, and leaf;and b) is variation in stomatal traits an integrated response to physiological stress expressed across the habitat gradient of Florida Keys forests? At eight sites distributed throughout the Keys, five leaves were collected from three mature trees for stomatal analysis. Leaf carbon stable isotope ratio (δ13C) was determined to infer the changes in water use efficiency caused by physiological stress experienced by each tree. The results showed that substantial proportions of the total variance in three traits (stomatal density, stomatal size, and δ13C) were observed at all levels, suggesting that processes operating at each scale are important in determining trait values. A significant negative correlation between stomatal density and size across scales was observed. Path model analysis showed that environmental variables, distance to ground water and ground water salinity, affect leaf δ13C indirectly, via its effects on stomatal traits, not directly to leaf δ13C. Therefore, the combination of small and densely distributed stomata seems to represent a strategy that allows B. simaruba to conserve water under conditions of physiological drought induced by either higher ground water salinity or flooding stress at very low elevation.
基金supported by the Finance Science and Technology Project of Hainan Province (ZDYF2021XDNY167)the National Natural Science Foundation of China (32170245+2 种基金32260447)the Project of Sanya Yazhou Bay Science and Technology City (SCKJJYRC-2022-04)Scientific Research Foundation of Hainan Tropical Ocean University (RHDRC202342)。
文摘Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identified a drought-responsive zinc finger protein,ZOS7,as highly expressed in Shanlandao upland rice.However,the function of this gene in controlling drought tolerance remains largely unexplored.In this study,we found that overexpressing ZOS7,a drought-responsive zinc finger protein,in rice increased biomass and yield under drought stress.Co-overexpressing ZOS7 and MYB60,encoding a protein with which ZOS7 interacted,intensified the yield increase.ZOS7 and MYB60 appear to form a module that confers drought tolerance by regulating stomatal density and wax biosynthesis.The ZOS7-MYB60module could be used in molecular breeding for drought tolerance in rice.
文摘The relationship between the stomatal density of five woody plants endemic to China, i.e. Eucommia ulmoides, Quercus liaotungensis, Q. glandulifera var. brevipetiolata, Cyclocarya paliurus and Ficus heteromorpha, and the atmospheric CO-2 concentrations was studied by observations on leaves of the herbarium-stored specimens(1920s-1990s). The results showed that the stomatal density in Eucommia ulmoides, Quercus liaotungensis and Q. glandulifera% var. brevipetiolata decreased significantly in response to the elevated atmospheric CO-2 concentrations, while in Cyclocarya paliurus it decreased slightly and in Ficus heteromorpha there were no responses.
基金Supported by the Chinese Academy of Sciences(KSCX2-YW-N-012)MOST(2003CB114305)
文摘Bio-water saving is to increase water use efficiency of crops or crop yield per unit of water input. Plant water use efficiency is determined by photosynthesis and transpiration, for both of which stomata are crucial. Stomata are pores on leaf epidermis for both water and carbon dioxide fluxes that are controlled by two major factors: stomatal behavior and density. Stomatal behavior has been the focus of intensive research, while less attention has been paid to stomatal density. Recently, a number of genes controlling stomatal development have been identified. This review summarizes the recent progress on the genes regulating stomatal density, and discusses the role of stomatal density in plant water use efficiency and the possibility to increase plant water use efficiency, hence bio-water saving by genetically manipulating stomatal density.