The paper presents the results of research which showed the energy effects when used in foil tunnel heat accumulator. The study was conducted in two tunnels (with and without heat accumulator) and two cycles of grow...The paper presents the results of research which showed the energy effects when used in foil tunnel heat accumulator. The study was conducted in two tunnels (with and without heat accumulator) and two cycles of growing cucumbers, i.e., in the cultivation of spring and autumn. The heat accumulator is divided into three segments of varying capacity coal deposits (porphyry-type stones). During the test crops (cucumbers) measured parameters associated with the surrounding climate, microclimate parameters inside the building and parameters of the injected and flowing out air from the accumulator have been monitored and archived by a computer system. The intensity of solar radiation, the technology of cultivation and cultivated species of plants were the same in both the tunnel with heat accumulator as well as the control object. On the basis of the balance of behavior, the heat and mass are described occurring processes related to the exchange of air during ventilation facility. The resulting effects were converted into differences in heat demand between the tunnel and the tunnel with an accumulator of heat. It was found that despite the increase ventilation in adopted arbitrary surface of the foil tunnel, the scope of changes in the amount of heat saved in one of the cultivation is in the range from 0.0015 GJ to over 1.4 GJ of heat.展开更多
文摘The paper presents the results of research which showed the energy effects when used in foil tunnel heat accumulator. The study was conducted in two tunnels (with and without heat accumulator) and two cycles of growing cucumbers, i.e., in the cultivation of spring and autumn. The heat accumulator is divided into three segments of varying capacity coal deposits (porphyry-type stones). During the test crops (cucumbers) measured parameters associated with the surrounding climate, microclimate parameters inside the building and parameters of the injected and flowing out air from the accumulator have been monitored and archived by a computer system. The intensity of solar radiation, the technology of cultivation and cultivated species of plants were the same in both the tunnel with heat accumulator as well as the control object. On the basis of the balance of behavior, the heat and mass are described occurring processes related to the exchange of air during ventilation facility. The resulting effects were converted into differences in heat demand between the tunnel and the tunnel with an accumulator of heat. It was found that despite the increase ventilation in adopted arbitrary surface of the foil tunnel, the scope of changes in the amount of heat saved in one of the cultivation is in the range from 0.0015 GJ to over 1.4 GJ of heat.