Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress grad...Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress gradient. The optimum drilling location and diameter were studied through analysis of different locations and diameters. By analyzing the effects of flank holes and an additional hole, drilling advice was proposed and fatigue testing of the cracks in a steel bridge deck with a crack stop hole was conducted. The results show that the stress at the crack tip with a crack stop hole decreased, and the major principal stress around the hole was distributed accordingly. The optimum position of the crack stop hole centre was where the centre of the crack stop hole was situated behind the crack and the hole edge coincided with the crack tip. Therefore, hole diameters larger than 8 mm, or those weakening the section by 10%, were suggested as the best diameters. In terms of multi-hole crack stopping, a flank hole was not recommended. The optimum horizontal position of flank holes was at a distance of 1/4 of a single hole diameter from, and in front of, the single hole. Besides, the experiment showed that crack stop hole could only prevent cracks from growing and had no influence on crack growth rate.展开更多
Maximum entropy likelihood (MEEL) methods also known as exponential tilted empirical likelihood methods using constraints from model Laplace transforms (LT) are introduced in this paper. An estimate of overall loss of...Maximum entropy likelihood (MEEL) methods also known as exponential tilted empirical likelihood methods using constraints from model Laplace transforms (LT) are introduced in this paper. An estimate of overall loss of efficiency based on Fourier cosine series expansion of the density function is proposed to quantify the loss of efficiency when using MEEL methods. Penalty function methods are suggested for numerical implementation of the MEEL methods. The methods can easily be adapted to estimate continuous distribution with support on the real line encountered in finance by using constraints based on the model generating function instead of LT.展开更多
A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general g...A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general global minimiizing algorithm is employed as a subroutine of the algorithm. The method is expected to tackle a large class of nonsmooth constrained minimization problem.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
基金Projects(51278166,51478163)supported by the National Natural Science Foundation of ChinaProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress gradient. The optimum drilling location and diameter were studied through analysis of different locations and diameters. By analyzing the effects of flank holes and an additional hole, drilling advice was proposed and fatigue testing of the cracks in a steel bridge deck with a crack stop hole was conducted. The results show that the stress at the crack tip with a crack stop hole decreased, and the major principal stress around the hole was distributed accordingly. The optimum position of the crack stop hole centre was where the centre of the crack stop hole was situated behind the crack and the hole edge coincided with the crack tip. Therefore, hole diameters larger than 8 mm, or those weakening the section by 10%, were suggested as the best diameters. In terms of multi-hole crack stopping, a flank hole was not recommended. The optimum horizontal position of flank holes was at a distance of 1/4 of a single hole diameter from, and in front of, the single hole. Besides, the experiment showed that crack stop hole could only prevent cracks from growing and had no influence on crack growth rate.
文摘Maximum entropy likelihood (MEEL) methods also known as exponential tilted empirical likelihood methods using constraints from model Laplace transforms (LT) are introduced in this paper. An estimate of overall loss of efficiency based on Fourier cosine series expansion of the density function is proposed to quantify the loss of efficiency when using MEEL methods. Penalty function methods are suggested for numerical implementation of the MEEL methods. The methods can easily be adapted to estimate continuous distribution with support on the real line encountered in finance by using constraints based on the model generating function instead of LT.
文摘A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general global minimiizing algorithm is employed as a subroutine of the algorithm. The method is expected to tackle a large class of nonsmooth constrained minimization problem.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.