An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is...In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is used that yields convergence of the Newton iteration to a solution, as the noise level goes to zero, under certain smoothness conditions on the nonlinear operator. Some appropriate assumptions on the closedness and smoothness of the starting value and the solution are shown to lead to optimal convergence rates.展开更多
This paper deals with a secretary problem on fuzzy sets, which allows both the recall of applicants and the uncertainty of a current applicant receiving an offer of employmellt. A new decision criterion is given to se...This paper deals with a secretary problem on fuzzy sets, which allows both the recall of applicants and the uncertainty of a current applicant receiving an offer of employmellt. A new decision criterion is given to select a satisfactory applicant. This result extends the works of M.C.K. Yang and M.H. Smith.展开更多
For the generalized linear model,the authors propose a sequential sampling procedure based on an adaptive shrinkage estimate of parameter.This method can determine a minimum sample size under which effective variables...For the generalized linear model,the authors propose a sequential sampling procedure based on an adaptive shrinkage estimate of parameter.This method can determine a minimum sample size under which effective variables contributing to the model are identified and estimates of regression parameters achieve the required accuracy.The authors prove that the proposed sequential procedure is asymptotically optimal.Numerical simulation studies show that the proposed method can save a large number of samples compared to the traditional sequential approach.展开更多
In 1980's, differential geometric methods are successfully used to study curved exponential families and normal nonlinear repression models. This paper presents a new geometric structure to study multinomial distr...In 1980's, differential geometric methods are successfully used to study curved exponential families and normal nonlinear repression models. This paper presents a new geometric structure to study multinomial distributipn models which contain a set of nonlinear parameters. Based on this geometric structure, the authors study several asymptotic properties for sequential estimation. The bias, the variance and the information loss of the sequeatial estimates are given from geometric viewpoint, and a limit theorem connected with the obServed and expected Fisher information is obtained ill terms of curVature measures. The results show that the sequeotial estimation procedure has some better properties which are generally impossible for nonsequeotial estimation procedures.展开更多
Line transect sampling is a very useful method in survey of wildlife population. Confident interval estimation for density D of a biological population is proposed based on a sequential design. The survey area is occu...Line transect sampling is a very useful method in survey of wildlife population. Confident interval estimation for density D of a biological population is proposed based on a sequential design. The survey area is occupied by the population whose size is unknown. A stopping rule is proposed by a kernel-based estimator of density function of the perpendicular data at a distance. With this stopping rule, we construct several confidence intervals for D by difference procedures. Some bias reduction techniques are used to modify the confidence intervals. These intervals provide the desired coverage probability as the bandwidth in the stopping rule approaches zero. A simulation study is also given to illustrate the performance of this proposed sequential kernel procedure.展开更多
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.
文摘In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is used that yields convergence of the Newton iteration to a solution, as the noise level goes to zero, under certain smoothness conditions on the nonlinear operator. Some appropriate assumptions on the closedness and smoothness of the starting value and the solution are shown to lead to optimal convergence rates.
文摘This paper deals with a secretary problem on fuzzy sets, which allows both the recall of applicants and the uncertainty of a current applicant receiving an offer of employmellt. A new decision criterion is given to select a satisfactory applicant. This result extends the works of M.C.K. Yang and M.H. Smith.
基金supported by the National Natural Science Foundation of China under Grant No.11101396the State Key Program of National Natural Science of China under Grant No.11231010the Fundamental Research Funds for the Central Universities under Grant No.WK2040000010
文摘For the generalized linear model,the authors propose a sequential sampling procedure based on an adaptive shrinkage estimate of parameter.This method can determine a minimum sample size under which effective variables contributing to the model are identified and estimates of regression parameters achieve the required accuracy.The authors prove that the proposed sequential procedure is asymptotically optimal.Numerical simulation studies show that the proposed method can save a large number of samples compared to the traditional sequential approach.
文摘In 1980's, differential geometric methods are successfully used to study curved exponential families and normal nonlinear repression models. This paper presents a new geometric structure to study multinomial distributipn models which contain a set of nonlinear parameters. Based on this geometric structure, the authors study several asymptotic properties for sequential estimation. The bias, the variance and the information loss of the sequeatial estimates are given from geometric viewpoint, and a limit theorem connected with the obServed and expected Fisher information is obtained ill terms of curVature measures. The results show that the sequeotial estimation procedure has some better properties which are generally impossible for nonsequeotial estimation procedures.
基金Supported by the National Natural Science Funds for Distinguished Young Scholar(No.70825004)the National Natural Science Foundation of China(No.10731010,10628104 and 10721101)Leading Academic Discipline Program,the 10th five year plan of 211 Project for Shanghai University of Finance and Economics and 211 Project for Shanghai University of Finance and Economics(the 3rd phase)
文摘Line transect sampling is a very useful method in survey of wildlife population. Confident interval estimation for density D of a biological population is proposed based on a sequential design. The survey area is occupied by the population whose size is unknown. A stopping rule is proposed by a kernel-based estimator of density function of the perpendicular data at a distance. With this stopping rule, we construct several confidence intervals for D by difference procedures. Some bias reduction techniques are used to modify the confidence intervals. These intervals provide the desired coverage probability as the bandwidth in the stopping rule approaches zero. A simulation study is also given to illustrate the performance of this proposed sequential kernel procedure.