The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energ...It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energy consumption by applying energy storage. Besides, the research used composite solar panel, waste- based inorganic foam materials, and polystyrene board as construction materials and integrated energy collection, living environment and farming by energy storage system. It is notable that the research would reduce pollution on environment caused by residential buildings, which coincides with national economy development and en- ergy strategy, promoting construction material industry development, with high social and economic benefits.展开更多
Peculiarities of low temperature charge transport and enerpy accumulation in alu-minum devices are investigated by means of study of cylindrical conductors having a rudial cuerent fiow between inner and outer concentr...Peculiarities of low temperature charge transport and enerpy accumulation in alu-minum devices are investigated by means of study of cylindrical conductors having a rudial cuerent fiow between inner and outer concentric contracts. Azimuthal current and, connected with it, self magnetic field are investigated in a wide range of radial current density up to 6000 A/cm2 under an external magnetic field up to 8 T Electron scattering processes are investigated and it is shown that relaxation electron mechanisms are determined by strong temperature dependence on account of high sus-ceptibility of scattering to anisotropy of electron dispersion law. The role of thermal phonons is investigated through an effective averaged conductivity tensor of polycrystalline medium. Using data of self magnetic self distribution on sample surface an energy density of self magnetic field is estimated. It is shown that at T=4.2 K average energy of self field may achieve at least 1 J/cm3. Using data of relaxation processes at temperature of liquid hydrogen it is established that self magnetic field must be a third of helium magnitude with respective self magnetic enengy density, spiral motion of carriers in this geometry being regarded as a current coils in usual inductive element.展开更多
With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order t...With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.展开更多
For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy dens...The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy density and rapid charging requirements.Experimental data demonstrate that a directional particle configuration can enhance charging speed while maintaining high-capacity density,but it is rarely discussed.Here,we have developed a particle-level electrochemical model capable of reconstructing an electrode with a directional particle configuration.By employing this method,an investigation was conducted to explore how the spatial morphology characteristics of particle configuration impact the energy storage characteristics of electrodes.Results demonstrate that rational particle configuration can effectively enhance the transport of lithium ions and create additional space for lithium-ion storage.With the same particle size distribution,the best electrode can increase the discharge capacity by up to132.4% and increase the charging SOC by 11.3% compared to the ordinary electrode under the condition of 6 C.These findings provide a further understanding of the energy storage mechanism inside the anisotropic particle distribution electrode,which is important for developing high-performance lithium-ion capacitors.展开更多
Supercapacitors, with ultrahigh power density, superior rate capability, long-term cyclability, and exceptional safety, are regarded as one highly competitive candidate of electrochemical energy storage devices,fillin...Supercapacitors, with ultrahigh power density, superior rate capability, long-term cyclability, and exceptional safety, are regarded as one highly competitive candidate of electrochemical energy storage devices,filling the gap between batteries and conventional capacitors. Despite of tremendous effort, elaborated screening of high-performance electrode materials, e.g., graphene, is still intensively required. In this review, we describe the most recent progress in the research and development of graphene-based materials for high-performance and new-concept supercapacitors for the targeted applications in next-generation and smart electronics. First, the design and fabrication of high-performance supercapacitors, including electrical double layer capacitors, pseudocapacitors and hybrid supercapacitors, were summarized in term of the charge storage mechanism. Second, new-concept supercapacitors with multiple functionalities of high-voltage, fiber-shape, microscale and shape-diversity in order to fulfill the requirements of future electronics are reviewed. Accordingly, special emphasis is given to the structure-dependent-performance effects of pores, hybridization, dimensionalities of graphene-based materials on performance of supercapacitors, and tremendous potential of graphene-based planar micro-supercapacitors for the direct seamlessly integration with versatile micro-electronics. Finally, perspectives and challenges of graphene-based supercapacitors are briefly discussed.展开更多
In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the...In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the incorporation into the grid, the new resources generation that has the properties such as randomness and volatility causes certain risks to the power grid, which results in the falling of the incorporation proportion instead of rising. This paper describes the current status and development problems of the new energy in China, and gives a brief introduction of characteristics of various energy storage technologies. This paper focuses on the analysis of the compressed air energy storage technology in recent years and new developments and the latest technology at home and abroad, additionally, the paper introduces a new concept of the compressed air energy storage system.展开更多
Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and...Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and economy development. However, development pattern that excessively relies on the natural source is impossible to provide a sustainable development way for us. As a result, we should combine renewable energy with new energy technology as the aim of economy. It means that it is urgent to exploit new energy. Meanwhile, the ratio of energy waste cannot be ignored. How to decrease energy waste is also significant. Construction sector costs a lot of energy, which is mainly used for heating and refrigeration. In the new energy generation technology, thermal energy can be transformed to electricity with combination of BIPV and thermal energy storage technology. Photovoltaic generation has a great progress in the building construction. As a result, the thermal energy storage technology becomes the key link in the production chain. In this paper, feasibility of applying phase-change material (PCM) in the thermal energy storage will be analyzed. And analysis results are provided with a relative mathematical model.展开更多
For development of passenger electrical transport, it is necessary to use energy more rationally. One of methods of vehicle power efficiency increase is installation of on-board energy storage systems. For studying of...For development of passenger electrical transport, it is necessary to use energy more rationally. One of methods of vehicle power efficiency increase is installation of on-board energy storage systems. For studying of system operation, it is necessary to carry out a lot of experiments, therefore it is favorable to use the test bench and its computer model for reduction of the number of physical experiments. In this article, the results of computer modeling for the optimization of traction drive test bench by adjusting of the operation parameters of supercapacitor energy storage are described. Test bench operation is considered in cases of the energy storage system working at various selected supercapacitor initial voltages. Maximal increase of possibility of vehicle test bench regenerative braking with minimal decrease of autonomous power supply mode possibility is investigated. There is estimated the energy storage system efficiency improving measures dependence from supercapacitor operational voltage ranges. Parameters at which the minimum losses of energy are observed are revealed. Dependence of energy storage system discharge power on the most admissible supercapacitor current is established.展开更多
Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This pap...Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice,and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation’s ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.Design/methodology/approach–This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology,management and structural reconstruction to reduce energy consumption and carbon emissions.Among them,the effect of structural energy conservation and emission reduction has become more prominent.It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors.The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.Findings–Key aspects in improving energy efficiency include re-optimization of energy structure,reinnovation of energy-saving technologies and optimization of transportation organization.Path selection includes continuing to promote electrified railway construction,increasing the use of new and renewable energy sources,and promoting the reform of railway transportation organizations.Originality/value–This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies,approaches for practice in a Chinese context.To achieve the expected goals,relevant supporting policies and measures need to be formulated,including actively guiding integrated transportation toward railway-oriented development,promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives,focusing on improving the energy efficiency of railways through market behavior.At the same time,it is necessary to pay attention to new phenomena in the railway industry for track and analysis.展开更多
As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternative...As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry.展开更多
The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide h...The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide high currents at high voltage levels.In addition to efectively monitoring all the electrical parameters of a battery pack system,such as the voltage,current,and temperature,the BMS is also used to improve the battery performance with proper safety measures within the system.With growing acceptance of lithium-ion batteries,major industry sectors such as the automotive,renewable energy,manufacturing,construction,and even some in the mining industry have brought forward the mass transition from fossil fuel dependency to electric powered machinery and redefned the world of energy storage.Hence,the functional safety considerations,which are those relating to automatic protection,in battery management for battery pack technologies are particularly important to ensure that the overall electrical system,regardless of whether it is for electric transportation or stationary energy storage,is in accordance with high standards of safety,reliability,and quality.If the system or product fails to meet functional and other safety requirements on account of faulty design or a sequence of failure events,then the environment,people,and property could be endangered.This paper analyzed the details of BMS for electric transportation and large-scale energy storage systems,particularly in areas concerned with hazardous environment.The analysis covers the aspect of functional safety that applies to BMS and is in accordance with the relevant industrial standards.A comprehensive evaluation of the components,architecture,risk reduction techniques,and failure mode analysis applicable to BMS operation was also presented.The article further provided recommendations on safety design and performance optimization in relation to the overall BMS integration.展开更多
Hydrogen is an important source of energy.The natural resouces of hydrogen is plenty and it gives us lots of heat, and it is dean. One of difficulties of developing hydrogen sources of energy is hydrogen storage. Hydr...Hydrogen is an important source of energy.The natural resouces of hydrogen is plenty and it gives us lots of heat, and it is dean. One of difficulties of developing hydrogen sources of energy is hydrogen storage. Hydrogen storage tank is either dangous or a little of capacity. Liquid hydrogen occupys small space. Liquefaction temperature of hydrogen is -253℃ and need better heat insulation protection, the volumn and weight of heat insulation layer are equal to hydrogen storage tank. Hydrogen storage utillizing hydrogen storage material is a very safety, economical and effective method. Hydrogen storage material is either a medium of sofid hydrogen storage or is negative pole active material of Ni-H battery,and is the one of key technoloy of fuel and Ni-H battery, it is an important material of new sources of energy too.Nanotechnology is introduced Mg-matrix hydrogen storage alloy and is achieved progress gteatly,but hydrogen storage alloy need be mode further improvment on applying investigation.展开更多
With the implementation of China’s carbon-peaking and carbon-neutrality strategy,new energy will achieve leapfrog growth.Due to the good economics of distributed new-energy generation,it can not only save users’own ...With the implementation of China’s carbon-peaking and carbon-neutrality strategy,new energy will achieve leapfrog growth.Due to the good economics of distributed new-energy generation,it can not only save users’own investment,but also help to achieve local consumption of new energy.However,it will also bring about a series of incremental costs to the power grid.This paper first enumerates the concept,development status and scheduling mode of a distributed new-energy storage system.Based on the above,it establishes a new-energy power generation model and an energy storage system charging and discharging model,and proposes a global optimization scheduling model for a distributed new-energy storage system,considering the time-of-use electricity price and taking the lowest total operating cost of the distributed new-energy power generation system as the objective function.Finally,it proposes a distribution network incremental cost analysis model based on the penetration of distributed new energy.The calculation results show that the incremental cost of grid-connected distributed new energy is 1.0849,1.2585 and 1.3473 yuan/kWh,respectively,which indicates that the global dispatching model can optimize the power consumption structure of a distributed power generation system,and has the function of peak shaving and valley filling,but the incremental cost of the distribution network will also increase.展开更多
New energy storage devices such as batteries and supercapacitors are widely used in various fields because of their irreplaceable excellent characteristics.Because there are relatively few monitoring parameters and li...New energy storage devices such as batteries and supercapacitors are widely used in various fields because of their irreplaceable excellent characteristics.Because there are relatively few monitoring parameters and limited under-standing of their operation,they present problems in accurately predicting their state and controlling operation,such as state of charge,state of health,and early failure indicators.Poor monitoring can seriously affect the performance of energy storage devices.Therefore,to maximize the efficiency of new energy storage devices without damaging the equipment,it is important to make full use of sensing systems to accurately monitor important parameters such as voltage,current,temperature,and strain.These are highly related to their states.Hence,this paper reviews the sensing methods and divides them into two categories:embedded and non-embedded sensors.A variety of measurement methods used to measure the above parameters of various new energy storage devices such as batteries and super-capacitors are systematically summarized.The methods with different innovative points are listed,their advantages and disadvantages are summarized,and the application of optical fiber sensors is emphasized.Finally,the challenges and prospects for these studies are described.The intent is to encourage researchers in relevant fields to study the early warning of safety accidents from the root causes.展开更多
The development of new energy industry is an essential guarantee for the sustainable development of society,and big data technology can enable new energy industrialization.Firstly,this paper presents an in-depth analy...The development of new energy industry is an essential guarantee for the sustainable development of society,and big data technology can enable new energy industrialization.Firstly,this paper presents an in-depth analysis and discussion of big data technology in new energy power and energy storage systems.Furthermore,the current status of big data technology application is discussed based on power generation,grid and user side,while future development trends are proposed based on the characteristics of big data technology.Finally,a comprehensive cloud-platform-based new energy power and energy storage system is proposed,which efficiently combines new energy power generation,consumption,and transmission sides to optimize energy allocation and improve energy utilization efficiency.This paper aims to provide certain guidance significance for new energy research and application.展开更多
Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this st...Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this study,a polycarbonate(PC)-based energy storage dielectric was designed with BN/SiO_(2)heterojunctions on its surface.Based on this structural design,a synergistic suppression of the carrier injection and transport was achieved,significantly improving the insulating properties of the polymer film.In particular,the composite film achieves optimal high-temperature energy-storage properties.The composite film can withstand an electric field intensity of 760 MV m^(-1)at 100℃and obtain an energy storage density of 8.32 J cm^(-3),while achieving a breakthrough energy storage performance even at 150℃(610 MV m^(-1),5.22 J cm^(-3)).Through adjustment of the heterojunction structure,free adjustment of the insulation performance of the material can be realized;this is of great significance for the optimization of the material properties.展开更多
The conventional classification of electrolyte solutions as“strong”or“weak”accounts for their charge transport properties,but neglects their mass transport properties,and is not readily applicable to highly concen...The conventional classification of electrolyte solutions as“strong”or“weak”accounts for their charge transport properties,but neglects their mass transport properties,and is not readily applicable to highly concentrated solutions.Here,we use the Onsager transport formalism in combination with linear response theory to attain a more general classification taking into account both charge and mass transport properties.To this end,we define a molar mass transport coefficientΛ_(mass),which is related to equilibrium center-of-mass fluctuations of the mobile ions and which is the masstransport analogue of the molar ionic conductivityΛ_(charge).Three classes of electrolyte solution are then distinguished:(i)“Strong electrolytes”with 4Λ_(mass)≈Λ_(charge);(ii)“weak charge transport electrolytes”withΛ_(charge)≪4Λ_(mass);and(iii)“weak mass transport electrolytes”with 4Λ_(mass)≪Λ_(charge).While classes(i)and(ii)encompass the classical“strong”and“weak”electrolytes,respectively,many highly concentrated electrolytes fall into class(iii)and thus exhibit transport properties clearly distinct from classical strong and weak electrolytes.展开更多
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
文摘It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energy consumption by applying energy storage. Besides, the research used composite solar panel, waste- based inorganic foam materials, and polystyrene board as construction materials and integrated energy collection, living environment and farming by energy storage system. It is notable that the research would reduce pollution on environment caused by residential buildings, which coincides with national economy development and en- ergy strategy, promoting construction material industry development, with high social and economic benefits.
文摘Peculiarities of low temperature charge transport and enerpy accumulation in alu-minum devices are investigated by means of study of cylindrical conductors having a rudial cuerent fiow between inner and outer concentric contracts. Azimuthal current and, connected with it, self magnetic field are investigated in a wide range of radial current density up to 6000 A/cm2 under an external magnetic field up to 8 T Electron scattering processes are investigated and it is shown that relaxation electron mechanisms are determined by strong temperature dependence on account of high sus-ceptibility of scattering to anisotropy of electron dispersion law. The role of thermal phonons is investigated through an effective averaged conductivity tensor of polycrystalline medium. Using data of self magnetic self distribution on sample surface an energy density of self magnetic field is estimated. It is shown that at T=4.2 K average energy of self field may achieve at least 1 J/cm3. Using data of relaxation processes at temperature of liquid hydrogen it is established that self magnetic field must be a third of helium magnitude with respective self magnetic enengy density, spiral motion of carriers in this geometry being regarded as a current coils in usual inductive element.
基金Supported by Joint Foundation of Natural Science Foundation of Jilin Province(No.YDZJ202101ZYTS152).
文摘With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.
基金This work is supported by the National Key R&D Program of China(2021YFB2400400).
文摘The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy density and rapid charging requirements.Experimental data demonstrate that a directional particle configuration can enhance charging speed while maintaining high-capacity density,but it is rarely discussed.Here,we have developed a particle-level electrochemical model capable of reconstructing an electrode with a directional particle configuration.By employing this method,an investigation was conducted to explore how the spatial morphology characteristics of particle configuration impact the energy storage characteristics of electrodes.Results demonstrate that rational particle configuration can effectively enhance the transport of lithium ions and create additional space for lithium-ion storage.With the same particle size distribution,the best electrode can increase the discharge capacity by up to132.4% and increase the charging SOC by 11.3% compared to the ordinary electrode under the condition of 6 C.These findings provide a further understanding of the energy storage mechanism inside the anisotropic particle distribution electrode,which is important for developing high-performance lithium-ion capacitors.
基金financially supported by the National Natural Science Foundation of China(Grant 51572259)National Key R&D Program of China(Grant 2016YBF0100100 and2016YFA0200200)+2 种基金Natural Science Foundation of Liaoning Province(Grant 201602737)Thousand Youth Talents Plan of China,DICP(DICP ZZBS201708)Exploratory Research Projects of Shaanxi Yanchang Petroleum(Group)CO.,LTD&DICP
文摘Supercapacitors, with ultrahigh power density, superior rate capability, long-term cyclability, and exceptional safety, are regarded as one highly competitive candidate of electrochemical energy storage devices,filling the gap between batteries and conventional capacitors. Despite of tremendous effort, elaborated screening of high-performance electrode materials, e.g., graphene, is still intensively required. In this review, we describe the most recent progress in the research and development of graphene-based materials for high-performance and new-concept supercapacitors for the targeted applications in next-generation and smart electronics. First, the design and fabrication of high-performance supercapacitors, including electrical double layer capacitors, pseudocapacitors and hybrid supercapacitors, were summarized in term of the charge storage mechanism. Second, new-concept supercapacitors with multiple functionalities of high-voltage, fiber-shape, microscale and shape-diversity in order to fulfill the requirements of future electronics are reviewed. Accordingly, special emphasis is given to the structure-dependent-performance effects of pores, hybridization, dimensionalities of graphene-based materials on performance of supercapacitors, and tremendous potential of graphene-based planar micro-supercapacitors for the direct seamlessly integration with versatile micro-electronics. Finally, perspectives and challenges of graphene-based supercapacitors are briefly discussed.
文摘In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the incorporation into the grid, the new resources generation that has the properties such as randomness and volatility causes certain risks to the power grid, which results in the falling of the incorporation proportion instead of rising. This paper describes the current status and development problems of the new energy in China, and gives a brief introduction of characteristics of various energy storage technologies. This paper focuses on the analysis of the compressed air energy storage technology in recent years and new developments and the latest technology at home and abroad, additionally, the paper introduces a new concept of the compressed air energy storage system.
文摘Recently, although renewable energy has a great development, primary source is still thermal power generation, which uses fossil fuel as the energy source. Supply and demand of fossil fuel are essential for social and economy development. However, development pattern that excessively relies on the natural source is impossible to provide a sustainable development way for us. As a result, we should combine renewable energy with new energy technology as the aim of economy. It means that it is urgent to exploit new energy. Meanwhile, the ratio of energy waste cannot be ignored. How to decrease energy waste is also significant. Construction sector costs a lot of energy, which is mainly used for heating and refrigeration. In the new energy generation technology, thermal energy can be transformed to electricity with combination of BIPV and thermal energy storage technology. Photovoltaic generation has a great progress in the building construction. As a result, the thermal energy storage technology becomes the key link in the production chain. In this paper, feasibility of applying phase-change material (PCM) in the thermal energy storage will be analyzed. And analysis results are provided with a relative mathematical model.
文摘For development of passenger electrical transport, it is necessary to use energy more rationally. One of methods of vehicle power efficiency increase is installation of on-board energy storage systems. For studying of system operation, it is necessary to carry out a lot of experiments, therefore it is favorable to use the test bench and its computer model for reduction of the number of physical experiments. In this article, the results of computer modeling for the optimization of traction drive test bench by adjusting of the operation parameters of supercapacitor energy storage are described. Test bench operation is considered in cases of the energy storage system working at various selected supercapacitor initial voltages. Maximal increase of possibility of vehicle test bench regenerative braking with minimal decrease of autonomous power supply mode possibility is investigated. There is estimated the energy storage system efficiency improving measures dependence from supercapacitor operational voltage ranges. Parameters at which the minimum losses of energy are observed are revealed. Dependence of energy storage system discharge power on the most admissible supercapacitor current is established.
文摘Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice,and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation’s ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.Design/methodology/approach–This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology,management and structural reconstruction to reduce energy consumption and carbon emissions.Among them,the effect of structural energy conservation and emission reduction has become more prominent.It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors.The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.Findings–Key aspects in improving energy efficiency include re-optimization of energy structure,reinnovation of energy-saving technologies and optimization of transportation organization.Path selection includes continuing to promote electrified railway construction,increasing the use of new and renewable energy sources,and promoting the reform of railway transportation organizations.Originality/value–This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies,approaches for practice in a Chinese context.To achieve the expected goals,relevant supporting policies and measures need to be formulated,including actively guiding integrated transportation toward railway-oriented development,promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives,focusing on improving the energy efficiency of railways through market behavior.At the same time,it is necessary to pay attention to new phenomena in the railway industry for track and analysis.
基金Supported by Project of Science and Technology of PetroChina (2021DJ17,2021DJ21)。
文摘As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry.
基金supported by Azure Mining Technology,CCTEG,and the University of Wollongong.
文摘The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide high currents at high voltage levels.In addition to efectively monitoring all the electrical parameters of a battery pack system,such as the voltage,current,and temperature,the BMS is also used to improve the battery performance with proper safety measures within the system.With growing acceptance of lithium-ion batteries,major industry sectors such as the automotive,renewable energy,manufacturing,construction,and even some in the mining industry have brought forward the mass transition from fossil fuel dependency to electric powered machinery and redefned the world of energy storage.Hence,the functional safety considerations,which are those relating to automatic protection,in battery management for battery pack technologies are particularly important to ensure that the overall electrical system,regardless of whether it is for electric transportation or stationary energy storage,is in accordance with high standards of safety,reliability,and quality.If the system or product fails to meet functional and other safety requirements on account of faulty design or a sequence of failure events,then the environment,people,and property could be endangered.This paper analyzed the details of BMS for electric transportation and large-scale energy storage systems,particularly in areas concerned with hazardous environment.The analysis covers the aspect of functional safety that applies to BMS and is in accordance with the relevant industrial standards.A comprehensive evaluation of the components,architecture,risk reduction techniques,and failure mode analysis applicable to BMS operation was also presented.The article further provided recommendations on safety design and performance optimization in relation to the overall BMS integration.
文摘Hydrogen is an important source of energy.The natural resouces of hydrogen is plenty and it gives us lots of heat, and it is dean. One of difficulties of developing hydrogen sources of energy is hydrogen storage. Hydrogen storage tank is either dangous or a little of capacity. Liquid hydrogen occupys small space. Liquefaction temperature of hydrogen is -253℃ and need better heat insulation protection, the volumn and weight of heat insulation layer are equal to hydrogen storage tank. Hydrogen storage utillizing hydrogen storage material is a very safety, economical and effective method. Hydrogen storage material is either a medium of sofid hydrogen storage or is negative pole active material of Ni-H battery,and is the one of key technoloy of fuel and Ni-H battery, it is an important material of new sources of energy too.Nanotechnology is introduced Mg-matrix hydrogen storage alloy and is achieved progress gteatly,but hydrogen storage alloy need be mode further improvment on applying investigation.
基金supported by the Science and Technology Project of State Grid Xinjiang Electric Power Co.,Ltd.(Analysis model of the influence of multi-dimensional and different proportion penetration of new energy on the incremental cost of the system,SGXJ0000FCJS2310224).
文摘With the implementation of China’s carbon-peaking and carbon-neutrality strategy,new energy will achieve leapfrog growth.Due to the good economics of distributed new-energy generation,it can not only save users’own investment,but also help to achieve local consumption of new energy.However,it will also bring about a series of incremental costs to the power grid.This paper first enumerates the concept,development status and scheduling mode of a distributed new-energy storage system.Based on the above,it establishes a new-energy power generation model and an energy storage system charging and discharging model,and proposes a global optimization scheduling model for a distributed new-energy storage system,considering the time-of-use electricity price and taking the lowest total operating cost of the distributed new-energy power generation system as the objective function.Finally,it proposes a distribution network incremental cost analysis model based on the penetration of distributed new energy.The calculation results show that the incremental cost of grid-connected distributed new energy is 1.0849,1.2585 and 1.3473 yuan/kWh,respectively,which indicates that the global dispatching model can optimize the power consumption structure of a distributed power generation system,and has the function of peak shaving and valley filling,but the incremental cost of the distribution network will also increase.
基金funded by the Youth Fund of Shandong Province Natural Science Foundation grant number ZR2020QE212Key Projects of Shandong Province Natural Science Foundation grant number ZR2020KF020+2 种基金the Guangdong Provincial Key Lab of Green Chemical Product Technology grant number GC 202111Zhejiang Province Natural Science Foundation grant number LY22E070007National Natural Science Foundation of China grant number 52007170.
文摘New energy storage devices such as batteries and supercapacitors are widely used in various fields because of their irreplaceable excellent characteristics.Because there are relatively few monitoring parameters and limited under-standing of their operation,they present problems in accurately predicting their state and controlling operation,such as state of charge,state of health,and early failure indicators.Poor monitoring can seriously affect the performance of energy storage devices.Therefore,to maximize the efficiency of new energy storage devices without damaging the equipment,it is important to make full use of sensing systems to accurately monitor important parameters such as voltage,current,temperature,and strain.These are highly related to their states.Hence,this paper reviews the sensing methods and divides them into two categories:embedded and non-embedded sensors.A variety of measurement methods used to measure the above parameters of various new energy storage devices such as batteries and super-capacitors are systematically summarized.The methods with different innovative points are listed,their advantages and disadvantages are summarized,and the application of optical fiber sensors is emphasized.Finally,the challenges and prospects for these studies are described.The intent is to encourage researchers in relevant fields to study the early warning of safety accidents from the root causes.
文摘The development of new energy industry is an essential guarantee for the sustainable development of society,and big data technology can enable new energy industrialization.Firstly,this paper presents an in-depth analysis and discussion of big data technology in new energy power and energy storage systems.Furthermore,the current status of big data technology application is discussed based on power generation,grid and user side,while future development trends are proposed based on the characteristics of big data technology.Finally,a comprehensive cloud-platform-based new energy power and energy storage system is proposed,which efficiently combines new energy power generation,consumption,and transmission sides to optimize energy allocation and improve energy utilization efficiency.This paper aims to provide certain guidance significance for new energy research and application.
基金This research was funded by the National Natural Science Foundation of China(No.U20A20308,52177017,and 51977050)Natural Science Foundation of Heilongjiang Province of China(No.YQ2021E036 and ZD2020E009)+3 种基金China Postdoctoral Science Foundation(No.2020T130156)Heilongjiang Postdoctoral Financial Assistance(No.LBHZ18098)Fundamental Research Foundation for Universities of Heilongjiang Province(No.2019-KYYWF-0207 and 2018-KYYWF-1624)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020177).
文摘Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this study,a polycarbonate(PC)-based energy storage dielectric was designed with BN/SiO_(2)heterojunctions on its surface.Based on this structural design,a synergistic suppression of the carrier injection and transport was achieved,significantly improving the insulating properties of the polymer film.In particular,the composite film achieves optimal high-temperature energy-storage properties.The composite film can withstand an electric field intensity of 760 MV m^(-1)at 100℃and obtain an energy storage density of 8.32 J cm^(-3),while achieving a breakthrough energy storage performance even at 150℃(610 MV m^(-1),5.22 J cm^(-3)).Through adjustment of the heterojunction structure,free adjustment of the insulation performance of the material can be realized;this is of great significance for the optimization of the material properties.
基金the Federal State of Hessen(Germany)for financial support of this work。
文摘The conventional classification of electrolyte solutions as“strong”or“weak”accounts for their charge transport properties,but neglects their mass transport properties,and is not readily applicable to highly concentrated solutions.Here,we use the Onsager transport formalism in combination with linear response theory to attain a more general classification taking into account both charge and mass transport properties.To this end,we define a molar mass transport coefficientΛ_(mass),which is related to equilibrium center-of-mass fluctuations of the mobile ions and which is the masstransport analogue of the molar ionic conductivityΛ_(charge).Three classes of electrolyte solution are then distinguished:(i)“Strong electrolytes”with 4Λ_(mass)≈Λ_(charge);(ii)“weak charge transport electrolytes”withΛ_(charge)≪4Λ_(mass);and(iii)“weak mass transport electrolytes”with 4Λ_(mass)≪Λ_(charge).While classes(i)and(ii)encompass the classical“strong”and“weak”electrolytes,respectively,many highly concentrated electrolytes fall into class(iii)and thus exhibit transport properties clearly distinct from classical strong and weak electrolytes.