With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels...With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.展开更多
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamic...Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.展开更多
Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for...Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models.展开更多
A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carder was reported. First, oxygen in the air was chemically fixed and converted to lattice ...A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carder was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9CO0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.展开更多
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composi...Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.展开更多
In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal ...In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.展开更多
So far,a clear understanding about the relationship of variable energy band structure with the corresponding charge-discharge process of energy storage materials is still lacking.Here,using optical spectroscopy(red-gr...So far,a clear understanding about the relationship of variable energy band structure with the corresponding charge-discharge process of energy storage materials is still lacking.Here,using optical spectroscopy(red-green-blue(RGB)value,reflectivity,transmittance,UV-vis,XPS,UPS)to studyα-Co(OH)_(2) electrode working in KOH electrolyte as the research object,we provide direct experimental evidence that:(1)The intercalation of OH-ions will reduce the valence/conduction band(VB and CB)and band gap energy(Eg)values;(2)The deintercalation of OH-ions corresponds with the reversion of VB,CB and E_(g) to the initial values;(3)The color of Co(OH)_(2) electrode also exhibit regular variations in RGB value during the charge-discharge process.展开更多
Crystal structure determines electrochemical energy storage characteristics;this is the underlying logic of material design.To date,hundreds of electrode materials have been developed to pursue superior performance.Ho...Crystal structure determines electrochemical energy storage characteristics;this is the underlying logic of material design.To date,hundreds of electrode materials have been developed to pursue superior performance.However,it remains a great challenge to understand the fundamental structure–performance relationship and achieve quantitative crystal structure design for efficient energy storage.In this review,we introduce the concept of crystal packing factor(PF),which can quantify crystal packing density.We then present and classify the typical crystal structures of attractive cathode/anode materials.Comparative PF analyses of different materials,including polymorphs,isomorphs,and others,are performed to clarify the influence of crystal packing density on energy storage performance through electronic and ionic conductivities.Notably,the practical electronic/ionic conductivities of energy storage materials are based on their intrinsic characteristics related to the PF yet are also affected by extrinsic factors.The PF provides a novel avenue for understanding the electrochemical performance of pristine materials and may offer guidance on designing better materials.Additional approaches involve size regulation,doping,carbon additives,and other methods.We also propose extended PF concepts to understand charge storage and transport behavior at different scales.Finally,we provide our insights on the major challenges and prospective solutions in this highly exciting field.展开更多
While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction...While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.展开更多
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w...Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.展开更多
Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling ...Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling performance.In this work,NbF_(5) was utilized to improve the cycling properties of the MgH_(2)-AlH_(3) composite.Cycling hydrogen desorption studies show that NbF_(5) significantly improves the cycling stability of MgH_(2)-AlH_(3).The MgH_(2)-AlH_(3)-NbF_(5) composite can release about 2.7 wt% of hydrogen at 300℃ for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than100 cycles.In comparison,the hydrogen desorption capacity of the MgH_(2)-AlH_(3) composite is decreasing with the cycle number increasing.The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles.Brunauer-Emmett-Teller(BET) surface area measurements show that the particle size of MgH_(2)-AlH_(3) composite decreases after cycling,which means pulverization of the composite.NbF_(5) can to some extent suppress the pulverization of the composite during cycling,which partially contributes to the improvement of the cycling hydrogen desorption properties of the material.展开更多
Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is def...Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized.展开更多
Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the req...Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years.展开更多
Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-bas...Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material.展开更多
Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustain...Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustainable energy conversion and storage. In this review,we provide a timely summary on the recent progress in three types of important Mg-based energy materials, based on the fundamental strategies of composition and structure engineering. With regard to Mg-based materials for batteries, we systematically review and analyze different material systems, structure regulation strategies as well as the relevant performance in Mg-ion batteries(MIBs) and Mg-air batteries(MABs), covering cathodes, electrolytes, anodes for MIBs, and anodes for MABs;as to Mg-based hydrogen storage materials, we discuss how catalyst adding, composite, alloying and nanostructuring improve the kinetic and thermodynamic properties of de/hydrogenation reactions, and in particular, the impacts of composition and structure modification on hydrogen absorption/dissociation processes and free energy modification mechanism are focused;regarding Mg-based thermoelectric materials, the relations between composition/structure and electrical/thermal transport properties of Mg_(3)X_(2)(X = Sb, Bi), Mg_(2)X(X = Si, Ge, Sn) and Mg Ag Sb-based materials, together with the representative research progress of each material system, are summarized and discussed. Finally, by pointing out remaining challenges and providing possible solutions, this review aims to shed light on the directions and perspectives for practical applications of magnesium-based energy materials in the future.展开更多
Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approache...Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti_(3)C_(2)T_(x) towards MgH_(2).More exposed edge facets of Ti_(3)C_(2)T_(x) displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH_(2) in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti_(3)C_(2)T_(x) MXene used for enhancing the catalytic activity in various fields.展开更多
The thermal energy storage phase change material used for building has been prepared with a few of fatty acids based on the principle of binary low eutectic point. The thermal behaviors such as phase transition temper...The thermal energy storage phase change material used for building has been prepared with a few of fatty acids based on the principle of binary low eutectic point. The thermal behaviors such as phase transition temperature and enthalpy of compound energy storage material are researched through differential scanning calorimeter(DSC) and scanning electron microscope(SEM) . The results show that the thermal energy storage phase change composite material can be used in the wall panels well as its higher latent heat.展开更多
基金support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.
基金supported by the Chongqing Special Key Project of Technology Innovation and Application Development,China(cstc2019jscx-dxwt B0029)the National Natural Science Foundation of China(51871143)+5 种基金the Science and Technology Committee of Shanghai(19010500400)the Shanghai Rising-Star Program(21QA1403200)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2019jcyj-msxm X0306)the Start-up Funds of Chongqing University(02110011044171)the Senior Talent Start-up Funds of Jiangsu University(4111310024)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2021M11)
文摘Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.
基金H.Shao acknowledges the Macao Science and Technol-ogy Development Fund(FDCT)for funding(project no.118/2016/A3 and 0062/2018/A2)and this work was also par-tially supported by a Start-Up Research Fund from the Uni-versity of Macao(SRG2016-00088-FST)+5 种基金Q.Li also thanks the financial support from the National Natural Science Foun-dation of China(51671118)Young Elite Scientists Sponsor-ship Program by CAST(2017QNRC001)the“Chenguang”Program from the Shanghai Municipal Education Commission(17CG42)Science and Technology Committee of Shanghai(16520721800)the Program for Professor of Special Ap-pointment(Eastern Scholar)by Shanghai Municipal Educa-tion Commission(No.TP2015040).。
文摘Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models.
基金Project supported by the National Natural Science Foundation of China (20306016, 20322201)
文摘A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carder was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9CO0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.
基金Funded by the National Natural Science of China(No.2012BAA05B06)
文摘Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.
文摘In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.
基金supported by the National Natural Science Foundation of China(Nos.51972146,52072150).
文摘So far,a clear understanding about the relationship of variable energy band structure with the corresponding charge-discharge process of energy storage materials is still lacking.Here,using optical spectroscopy(red-green-blue(RGB)value,reflectivity,transmittance,UV-vis,XPS,UPS)to studyα-Co(OH)_(2) electrode working in KOH electrolyte as the research object,we provide direct experimental evidence that:(1)The intercalation of OH-ions will reduce the valence/conduction band(VB and CB)and band gap energy(Eg)values;(2)The deintercalation of OH-ions corresponds with the reversion of VB,CB and E_(g) to the initial values;(3)The color of Co(OH)_(2) electrode also exhibit regular variations in RGB value during the charge-discharge process.
基金supported by the National Natural Science Foundation of China(52202327)Science and Technology Commission of Shanghai Municipality(22ZR1471300)the Key Research Program of Frontier Science,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC013 and KGZD-EW-T06).
文摘Crystal structure determines electrochemical energy storage characteristics;this is the underlying logic of material design.To date,hundreds of electrode materials have been developed to pursue superior performance.However,it remains a great challenge to understand the fundamental structure–performance relationship and achieve quantitative crystal structure design for efficient energy storage.In this review,we introduce the concept of crystal packing factor(PF),which can quantify crystal packing density.We then present and classify the typical crystal structures of attractive cathode/anode materials.Comparative PF analyses of different materials,including polymorphs,isomorphs,and others,are performed to clarify the influence of crystal packing density on energy storage performance through electronic and ionic conductivities.Notably,the practical electronic/ionic conductivities of energy storage materials are based on their intrinsic characteristics related to the PF yet are also affected by extrinsic factors.The PF provides a novel avenue for understanding the electrochemical performance of pristine materials and may offer guidance on designing better materials.Additional approaches involve size regulation,doping,carbon additives,and other methods.We also propose extended PF concepts to understand charge storage and transport behavior at different scales.Finally,we provide our insights on the major challenges and prospective solutions in this highly exciting field.
基金supported by The National Key Research and Development Program of China(2023YFB3809100)the National Natural Science Foundation of China(U23A200722)the Fundamental Research Funds for the Central Universities(2023CDJXY-016).
文摘While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
文摘Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
基金financially supported by the National Natural Science Foundation of China(Nos.51771171 and 51971199)the Natural Science Foundation of Guangxi Province(Nos.2019GXNSFBA185004 and 2018GXNSFAA281308)the Basic Ability Improvement Project for Young and Middle-Aged Teachers in Colleges and Universities in Guangxi(No.2019KY0021)。
文摘Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling performance.In this work,NbF_(5) was utilized to improve the cycling properties of the MgH_(2)-AlH_(3) composite.Cycling hydrogen desorption studies show that NbF_(5) significantly improves the cycling stability of MgH_(2)-AlH_(3).The MgH_(2)-AlH_(3)-NbF_(5) composite can release about 2.7 wt% of hydrogen at 300℃ for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than100 cycles.In comparison,the hydrogen desorption capacity of the MgH_(2)-AlH_(3) composite is decreasing with the cycle number increasing.The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles.Brunauer-Emmett-Teller(BET) surface area measurements show that the particle size of MgH_(2)-AlH_(3) composite decreases after cycling,which means pulverization of the composite.NbF_(5) can to some extent suppress the pulverization of the composite during cycling,which partially contributes to the improvement of the cycling hydrogen desorption properties of the material.
基金the National Natural Science Foundation of China(Nos.51302079,51702138 and 51403193)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized.
基金Acknowledgements The authors gratefully acknowledged the financial support for this work from the National Basic Research Program of China (973 Program) (Grant No. 2010CB631303), the National Natural Science Foundation of China (Grant Nos. 20833009, 20873148, 20903095, 50901070, 51071146, 51071081, and U0734005), IUPAC (Project No. 2008-006-3-100), Dalian Science and Technology Foundation (Grant No. 2009AllGX052), Liaoning BaiQianWan Talents Program (Project No. 2010921050), and the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ10-1Z).
文摘Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years.
基金This work was supported by the National Natural Science Foundation of China(grant numbers 52071281 and 51971197)the Natural Science Foundation of Hebei Province(grant numbers E2019203161,E2019203414 and E2020203081)Science and Technology Major project of Inner Mongolia(2020ZD0012).
文摘Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material.
基金financial support from the National Key Research and Development Program of China (No.2021YFB3502200)the National Natural Science Foundation of China (Grants Nos.52271202,51971040,52171101)+2 种基金the Shanghai Rising-Star Program (No.21QA1403200)supported by a start-up fund from Chongqing University (02110011044171)Liuchuang Program of Chongqing Municipality (cx2022038)。
文摘Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustainable energy conversion and storage. In this review,we provide a timely summary on the recent progress in three types of important Mg-based energy materials, based on the fundamental strategies of composition and structure engineering. With regard to Mg-based materials for batteries, we systematically review and analyze different material systems, structure regulation strategies as well as the relevant performance in Mg-ion batteries(MIBs) and Mg-air batteries(MABs), covering cathodes, electrolytes, anodes for MIBs, and anodes for MABs;as to Mg-based hydrogen storage materials, we discuss how catalyst adding, composite, alloying and nanostructuring improve the kinetic and thermodynamic properties of de/hydrogenation reactions, and in particular, the impacts of composition and structure modification on hydrogen absorption/dissociation processes and free energy modification mechanism are focused;regarding Mg-based thermoelectric materials, the relations between composition/structure and electrical/thermal transport properties of Mg_(3)X_(2)(X = Sb, Bi), Mg_(2)X(X = Si, Ge, Sn) and Mg Ag Sb-based materials, together with the representative research progress of each material system, are summarized and discussed. Finally, by pointing out remaining challenges and providing possible solutions, this review aims to shed light on the directions and perspectives for practical applications of magnesium-based energy materials in the future.
基金supported by the National Natural Science Foundation of China (51801100,51771092,21975125,51801099)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB430014)+1 种基金Six Talent Peaks Project in Jiangsu Province (2018,XNY-020)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti_(3)C_(2)T_(x) towards MgH_(2).More exposed edge facets of Ti_(3)C_(2)T_(x) displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH_(2) in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti_(3)C_(2)T_(x) MXene used for enhancing the catalytic activity in various fields.
基金the National Support Projects of the Eleventh Five-year Plan (No. 2006BAJ02B01)the Special Research Projects of Shaanxi Province Education Department (No. 08JK316)the Key Discipline Construction Projects of Shaanxi Province for Funding Support
文摘The thermal energy storage phase change material used for building has been prepared with a few of fatty acids based on the principle of binary low eutectic point. The thermal behaviors such as phase transition temperature and enthalpy of compound energy storage material are researched through differential scanning calorimeter(DSC) and scanning electron microscope(SEM) . The results show that the thermal energy storage phase change composite material can be used in the wall panels well as its higher latent heat.