The accessible and convenient hydrogen supply is the foundation of successful materialization for hydrogen-powered vehicles(HVs).This paper proposes a novel optimal scheduling model for gaseous-liquid hydrogen generat...The accessible and convenient hydrogen supply is the foundation of successful materialization for hydrogen-powered vehicles(HVs).This paper proposes a novel optimal scheduling model for gaseous-liquid hydrogen generation and storage plants powered by renewable energy to enhance the economic feasibility of investment.The gaseous-liquid hydrogen generation and storage plant can be regarded as an energy hub to supply concurrent service to both the transportation sector and ancillary market.In the proposed model,the power to multi-state hydrogen(P2MH)process is analyzed in detail to model the branched hydrogen flow constraints and the corresponding energy conversion relationship during hydrogen generation,processing,and storage.To model the coupling and interaction of diverse modules in the system,the multi-energy coupling matrix is developed,which can exhibit the mapping of power from the input to the output.Based on this,a multi-product optimal scheduling(MPOS)algorithm considering complementarity of different hydrogen products is further formulated to optimize dispatch factors of the energy hub system to maximize the profit within limited resources.The demand response signals are incorporated in the algorithm to further enhance the operation revenue and the scenario-based method is deployed to consider the uncertainty.The proposed methodology has been fully tested and the results demonstrate that the proposed MPOS can lead to a higher rate of return for the gaseous-liquid hydrogen generation and storage plant.展开更多
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(V...Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.展开更多
The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electri...The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the ef...The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.展开更多
Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ...Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.展开更多
Flexible gas power plants are subject to energy storage,peak regulations,and greenhouse gas emissions.This study proposes an integrated power generation system that combines liquid air energy storage(LAES),liquefied n...Flexible gas power plants are subject to energy storage,peak regulations,and greenhouse gas emissions.This study proposes an integrated power generation system that combines liquid air energy storage(LAES),liquefied natural gas(LNG)cold energy utilization,gas power systems,and CO_(2) capture and storage(CCS)technologies,named the LAES-LNG-CCS system.The off-peak electricity can be stored in liquid air.During the peak period,air and gas turbines generate supplementary electricity.Both LNG chemical energy and cold energy were considered:the former was used for gas power plants,and the latter was used for LAES regasification and CCS processes.Based on the thermodynamic analysis,we evaluated the effects of the recovery pressure,CCS pressure,and combustion temperature on the system power consumption and efficiency.The results demonstrated that the system recovery pressure,CCS pressure,and combustion temperature had the greatest effects on system power generation.Round-trip efficiency(RTE)was significantly affected by combustion temperature.The largest exergy loss occurred in the gas power plant.The optimal system operating ranges of the system recovery pressure,CCS pressure,and combustion temperature were 6−10 MPa,0.53−0.8 MPa,and 1,503−1,773 K,where the RTEs and𝜂Ex,RS reached 55%−58.98%and 74.6%−76%,respectively.The proposed system can simultaneously achieve the synergistic functions of large-scale energy storage,multilevel energy utilization,peak regulation,and carbon emission reduction.It can also be widely used in advanced distributed energy storage applications in the future.展开更多
Aims Woody plants are widely distributed in various grassland types along the altitudinal/climatic gradients in Xinjiang,China.Considering previously reported change in carbon(C)storage following woody plant encroachm...Aims Woody plants are widely distributed in various grassland types along the altitudinal/climatic gradients in Xinjiang,China.Considering previously reported change in carbon(C)storage following woody plant encroachment in grasslands and the mediating effect of climate on this change,we predicted that a positive effect of woody plants on plant C storage in semiarid grasslands may revert to a negative effect in arid grasslands.We first investigated the spatial variation of aboveground C(AGC)and belowground C(BGC)storage among grassland types and then tested our prediction.Methods We measured the living AGC storage,litter C(LC)and BGC storage of plants in two physiognomic types,wooded grasslands(aboveground biomass of woody plants at least 50%)and pure grasslands without woody plants in six grassland types representing a gradient form semiarid to arid conditions across Xinjiang.Important Findings Living AGC,LC,BGC and total plant C storage increased from desert to mountain meadows.These increases could also be explained by increasing mean annual precipitation(MAP)or decreasing mean annual temperature(MAT),suggesting that grassland types indeed represented an aridity gradient.Woody plants had an effect on the plant C storage both in size and in distribution relative to pure grasslands.The direction and strength of the effect of woody plants varied with grassland types due to the mediating effect of the climate,with wetter conditions promoting a positive effect of woody plants.Woody plants increased vegetation-level AGC through their high AGC relative to herbaceous plants.However,more negative effects of woody plants on herbaceous plants with increasing aridity led to a weaker increase in the living AGC in arid desert,steppe desert and desert steppe than in the less arid other grassland types.Under greater aridity(lower MAP and higher MAT),woody plants allocated less biomass to roots and had lower BGC and had a more negative impact on herbaceous plant production,thereby reducing vegetation-level BGC in the desert,steppe desert and desert steppe.In sum,this resulted in a negative effect of woody plants on total plant C storage in the most arid grasslands in Xinjiang.As a consequence,we predict that woody plant encroachment may decrease rather than increase C storage in grasslands under future drier conditions.展开更多
In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PS...In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PSHPPs) owners participate in power market. Objective function is defined as participants’ social welfare achieved from power pool and ancillary markets in yearly horizon. Wind turbines have been modeled by probability-generation tree scenarios based on statistical information. We concentrate on investment profits of WTs numbers and its generation capacity beside to PSHPPs and THUs power plants in power systems due to increase in high flexible tools for Independent system operator into the planning and operation planning time interval. For effectiveness evaluation of proposed model, simulation studies are applied on 14-Bus IEEE test power system.展开更多
The hydraulic characteristics at the side inlet/outlet of pumped storage plants is studied by numerical simulations,covering the flow distribution,head loss,vortex,and others.Based on the physical model test,the reali...The hydraulic characteristics at the side inlet/outlet of pumped storage plants is studied by numerical simulations,covering the flow distribution,head loss,vortex,and others.Based on the physical model test,the realizable k-εturbulence model is used in the 3-D simulation of the side inlet/outlet.A new scheme is suggested to obtain the uneven flow distribution over three branch orifices.The variation of the free surface with the reservoir water level under the pumped condition is simulated,with results consistent with the experimental results.展开更多
Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak...Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak-Higashi (BEACH)-domain proteins contribute to both vacuolar protein transport and effector- triggered immunity (ETI). We screened a green fluorescent seed (GFS) library of Arabidopsis mutants with defects in vesicle trafficking and isolated two allelic mutants gfs3 and gfs12 with a defect in seed pro- tein transport to PSV. The gene responsible for the mutant phenotype was found to encode a putative pro- tein belonging to group D of BEACH-domain proteins, which possess kinase domains. Disruption of other BEACH-encoding loci in the gfs12 mutant showed that BEACH homologs acted in a cascading manner for PSV trafficking. The epistatic genetic interactions observed among BEACH homologs were also found in the ETI responses of the gfs12 and gfs12 bchb-1 mutants, which showed elevated avirulent bacterial growth. The GFS12 kinase domain interacted specifically with the pleckstrin homology domain of BchCl. These results suggest that a cascade of multiple BEACH-domain proteins contributes to vacuolar protein transport and plant defense.展开更多
基金supported by the National Natural Science Foundation of China(No.51877117)the Key Project of National Natural Science Foundation of China(No.61733010)。
文摘The accessible and convenient hydrogen supply is the foundation of successful materialization for hydrogen-powered vehicles(HVs).This paper proposes a novel optimal scheduling model for gaseous-liquid hydrogen generation and storage plants powered by renewable energy to enhance the economic feasibility of investment.The gaseous-liquid hydrogen generation and storage plant can be regarded as an energy hub to supply concurrent service to both the transportation sector and ancillary market.In the proposed model,the power to multi-state hydrogen(P2MH)process is analyzed in detail to model the branched hydrogen flow constraints and the corresponding energy conversion relationship during hydrogen generation,processing,and storage.To model the coupling and interaction of diverse modules in the system,the multi-energy coupling matrix is developed,which can exhibit the mapping of power from the input to the output.Based on this,a multi-product optimal scheduling(MPOS)algorithm considering complementarity of different hydrogen products is further formulated to optimize dispatch factors of the energy hub system to maximize the profit within limited resources.The demand response signals are incorporated in the algorithm to further enhance the operation revenue and the scenario-based method is deployed to consider the uncertainty.The proposed methodology has been fully tested and the results demonstrate that the proposed MPOS can lead to a higher rate of return for the gaseous-liquid hydrogen generation and storage plant.
基金the output of a research project (Title: Application of Doubly Fed Asynchronous machine in Pumped Storage Hydropower Plant in Generate Mode, supported by Islamic Azad University South Tehran Branch)
文摘Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.
文摘The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金This research was funded by Dongfang Electric Machinery Co., Ltd.
文摘The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.
文摘Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.
基金funded by the National Natural Science Foundation of China(Grant No.:52076159).
文摘Flexible gas power plants are subject to energy storage,peak regulations,and greenhouse gas emissions.This study proposes an integrated power generation system that combines liquid air energy storage(LAES),liquefied natural gas(LNG)cold energy utilization,gas power systems,and CO_(2) capture and storage(CCS)technologies,named the LAES-LNG-CCS system.The off-peak electricity can be stored in liquid air.During the peak period,air and gas turbines generate supplementary electricity.Both LNG chemical energy and cold energy were considered:the former was used for gas power plants,and the latter was used for LAES regasification and CCS processes.Based on the thermodynamic analysis,we evaluated the effects of the recovery pressure,CCS pressure,and combustion temperature on the system power consumption and efficiency.The results demonstrated that the system recovery pressure,CCS pressure,and combustion temperature had the greatest effects on system power generation.Round-trip efficiency(RTE)was significantly affected by combustion temperature.The largest exergy loss occurred in the gas power plant.The optimal system operating ranges of the system recovery pressure,CCS pressure,and combustion temperature were 6−10 MPa,0.53−0.8 MPa,and 1,503−1,773 K,where the RTEs and𝜂Ex,RS reached 55%−58.98%and 74.6%−76%,respectively.The proposed system can simultaneously achieve the synergistic functions of large-scale energy storage,multilevel energy utilization,peak regulation,and carbon emission reduction.It can also be widely used in advanced distributed energy storage applications in the future.
基金supported by the National Natural Science Foundation of China(U1603235,31500450)the strategic priority research program of the Chinese Academy of Sciences(XDA05050405)Bernhard Schmid was supported by the University of Zürich Research Priority Program on Global Change and Biodiversity(URPP GCB).
文摘Aims Woody plants are widely distributed in various grassland types along the altitudinal/climatic gradients in Xinjiang,China.Considering previously reported change in carbon(C)storage following woody plant encroachment in grasslands and the mediating effect of climate on this change,we predicted that a positive effect of woody plants on plant C storage in semiarid grasslands may revert to a negative effect in arid grasslands.We first investigated the spatial variation of aboveground C(AGC)and belowground C(BGC)storage among grassland types and then tested our prediction.Methods We measured the living AGC storage,litter C(LC)and BGC storage of plants in two physiognomic types,wooded grasslands(aboveground biomass of woody plants at least 50%)and pure grasslands without woody plants in six grassland types representing a gradient form semiarid to arid conditions across Xinjiang.Important Findings Living AGC,LC,BGC and total plant C storage increased from desert to mountain meadows.These increases could also be explained by increasing mean annual precipitation(MAP)or decreasing mean annual temperature(MAT),suggesting that grassland types indeed represented an aridity gradient.Woody plants had an effect on the plant C storage both in size and in distribution relative to pure grasslands.The direction and strength of the effect of woody plants varied with grassland types due to the mediating effect of the climate,with wetter conditions promoting a positive effect of woody plants.Woody plants increased vegetation-level AGC through their high AGC relative to herbaceous plants.However,more negative effects of woody plants on herbaceous plants with increasing aridity led to a weaker increase in the living AGC in arid desert,steppe desert and desert steppe than in the less arid other grassland types.Under greater aridity(lower MAP and higher MAT),woody plants allocated less biomass to roots and had lower BGC and had a more negative impact on herbaceous plant production,thereby reducing vegetation-level BGC in the desert,steppe desert and desert steppe.In sum,this resulted in a negative effect of woody plants on total plant C storage in the most arid grasslands in Xinjiang.As a consequence,we predict that woody plant encroachment may decrease rather than increase C storage in grasslands under future drier conditions.
文摘In this paper a new market based analytical model is proposed for optimal placement of Wind Turbines (WTs) in power systems. In addition to wind turbines, thermal units (THUs) and Pumped Storage Hydro Power Plants (PSHPPs) owners participate in power market. Objective function is defined as participants’ social welfare achieved from power pool and ancillary markets in yearly horizon. Wind turbines have been modeled by probability-generation tree scenarios based on statistical information. We concentrate on investment profits of WTs numbers and its generation capacity beside to PSHPPs and THUs power plants in power systems due to increase in high flexible tools for Independent system operator into the planning and operation planning time interval. For effectiveness evaluation of proposed model, simulation studies are applied on 14-Bus IEEE test power system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50579048)
文摘The hydraulic characteristics at the side inlet/outlet of pumped storage plants is studied by numerical simulations,covering the flow distribution,head loss,vortex,and others.Based on the physical model test,the realizable k-εturbulence model is used in the 3-D simulation of the side inlet/outlet.A new scheme is suggested to obtain the uneven flow distribution over three branch orifices.The variation of the free surface with the reservoir water level under the pumped condition is simulated,with results consistent with the experimental results.
文摘Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak-Higashi (BEACH)-domain proteins contribute to both vacuolar protein transport and effector- triggered immunity (ETI). We screened a green fluorescent seed (GFS) library of Arabidopsis mutants with defects in vesicle trafficking and isolated two allelic mutants gfs3 and gfs12 with a defect in seed pro- tein transport to PSV. The gene responsible for the mutant phenotype was found to encode a putative pro- tein belonging to group D of BEACH-domain proteins, which possess kinase domains. Disruption of other BEACH-encoding loci in the gfs12 mutant showed that BEACH homologs acted in a cascading manner for PSV trafficking. The epistatic genetic interactions observed among BEACH homologs were also found in the ETI responses of the gfs12 and gfs12 bchb-1 mutants, which showed elevated avirulent bacterial growth. The GFS12 kinase domain interacted specifically with the pleckstrin homology domain of BchCl. These results suggest that a cascade of multiple BEACH-domain proteins contributes to vacuolar protein transport and plant defense.