The upgrade project of the Hefei Light Source (HLS), named HLS-Ⅱ, is under way, whose storage ring will be reconstructed. The HLS-Ⅱ storage ring has lower emittance and more straight sections available for inserti...The upgrade project of the Hefei Light Source (HLS), named HLS-Ⅱ, is under way, whose storage ring will be reconstructed. The HLS-Ⅱ storage ring has lower emittance and more straight sections available for insertion devices compared with the present HLS storage ring. The scan method is applied to the linear lattice optimization for the HLS-Ⅱ storage ring to get thorough information about the lattice. To reduce the computation amount, several scans with different grid spacing values are conducted. And, the calculation of the chromatic sextupole strength for the achromatic mode is included in the scan, which is useful for nonlinear lattice optimization. To better analyze the obtained solutions in the scan, the lattice properties and the variables of quadrupole strengths are statistically analyzed. And, the process of selecting solutions is described in detail, including the choice of the working point, the settings for the emittance and optical functions, and the restriction of maximum magnet strength. Two obtained lattices, one for the achromatic mode and the other for the non-achromatic mode, are presented, including their optical functions and optimized dynamic apertures.展开更多
The Hefei Light Source (HLS) is undergoing a major upgrade project, named HLS-Ⅱ , in order to obtain lower emittance and more insertion device straight sections. Undulators are the main insertion devices in the HLS...The Hefei Light Source (HLS) is undergoing a major upgrade project, named HLS-Ⅱ , in order to obtain lower emittance and more insertion device straight sections. Undulators are the main insertion devices in the HLS-Ⅱ storage ring. In this paper, based on the database of lattice parameters built for the HLS-Ⅱ storage ring obtained by the global scan method, we use the quantity related to the undulator radiation brightness to more directly search for high brightness lattices. Lattice solutions for achromatic and non-achromatic modes are easily found with lower emittance, smaller beta functions at the center of the insertion device straight sections and lower dispersion in non-zero dispersion straight sections compared with the previous lattice solutions. In this paper, the superperiod lattice with alternating high and low horizontal beta functions in long straight sections for the achromatic mode is studied using the multiobjective particle swarm optimization algorithm.展开更多
基金Supported by National Natural Science Foundation of China(11175182, 10979045)
文摘The upgrade project of the Hefei Light Source (HLS), named HLS-Ⅱ, is under way, whose storage ring will be reconstructed. The HLS-Ⅱ storage ring has lower emittance and more straight sections available for insertion devices compared with the present HLS storage ring. The scan method is applied to the linear lattice optimization for the HLS-Ⅱ storage ring to get thorough information about the lattice. To reduce the computation amount, several scans with different grid spacing values are conducted. And, the calculation of the chromatic sextupole strength for the achromatic mode is included in the scan, which is useful for nonlinear lattice optimization. To better analyze the obtained solutions in the scan, the lattice properties and the variables of quadrupole strengths are statistically analyzed. And, the process of selecting solutions is described in detail, including the choice of the working point, the settings for the emittance and optical functions, and the restriction of maximum magnet strength. Two obtained lattices, one for the achromatic mode and the other for the non-achromatic mode, are presented, including their optical functions and optimized dynamic apertures.
基金Supported by National Natural Science Foundation of China (11175182, 10979045)
文摘The Hefei Light Source (HLS) is undergoing a major upgrade project, named HLS-Ⅱ , in order to obtain lower emittance and more insertion device straight sections. Undulators are the main insertion devices in the HLS-Ⅱ storage ring. In this paper, based on the database of lattice parameters built for the HLS-Ⅱ storage ring obtained by the global scan method, we use the quantity related to the undulator radiation brightness to more directly search for high brightness lattices. Lattice solutions for achromatic and non-achromatic modes are easily found with lower emittance, smaller beta functions at the center of the insertion device straight sections and lower dispersion in non-zero dispersion straight sections compared with the previous lattice solutions. In this paper, the superperiod lattice with alternating high and low horizontal beta functions in long straight sections for the achromatic mode is studied using the multiobjective particle swarm optimization algorithm.