The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The enviro...The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.展开更多
This paper studied the contents of heavy metals and their accumulation in the disturbed landscapes in ore deposits of East Kazakhstan. A total of 14 sites were examined in Zyrynovsky and Tishinsk deposits and Ridder t...This paper studied the contents of heavy metals and their accumulation in the disturbed landscapes in ore deposits of East Kazakhstan. A total of 14 sites were examined in Zyrynovsky and Tishinsk deposits and Ridder town, and 50 soil samples were taken. Results indicated that the contents of heavy metals in the soil reached the maximum permissible concentration. Emissions of the zinc plant negatively affected the soil of nearby territories. In the remediated areas, a high concentration of heavy metals was observed at a depth where the bulk soil borders the rock. Accumulation of heavy metals on the surface of the remediated areas occurred due to biological accumulation in the plant. Plants transmitted heavy elements through the root system to the upper vegetative organs, making them accumulate in the upper layers of the soil. The heavy metals migrated and accumulated from the lower layers to the surface layers of the soil. The absence of soil meso-fauna resulted in the contamination of soil by heavy metals. The analysis of water samples, taken from the waste storages and the waste waters with heavy metals in the Zyryanovsk deposit and Ridder town, revealed severe water contamination.展开更多
Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1,2, 3, 4, 5, 7, and 12 days, and then fed into a ...Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1,2, 3, 4, 5, 7, and 12 days, and then fed into a methanogenic reactor for a biochemical methane potential(BMP) test lasting up to 60 days. Relative to the methane production of food waste stored for 0–1 day(285–308 m L/g-added volatile solids(VSadded)), that after2–4 days and after 5–12 days of storage increased to 418–530 and 618–696 m L/g-VSadded,respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5–7 days of storage of food waste in anaerobic digestion treatment plants.展开更多
Municipal solid waste(MSW)storage sites are potential and overlooked contributors to microplastic(MP)pollution.Herein,the distribution and dispersion characteristics of MPs at MSW storage sites were investigated throu...Municipal solid waste(MSW)storage sites are potential and overlooked contributors to microplastic(MP)pollution.Herein,the distribution and dispersion characteristics of MPs at MSW storage sites were investigated through modeling,sampling analysis,and prediction methodologies.The results indicated a notable adsorption phenomenon of MPs on smooth surfaces within such sites,achieving high saturation levels and making MPs prone to re-release by airflow disturbance.Quantitative analysis revealed that the MP concentrations on these surfaces varied from 4.48×10^(5) to 1.90×10^(6) n/m^(2) and that MPs predominantly accumulated in the corner areas.Notably,MP accumulation on wall surfaces can be reduced by 76.4%using washing procedures.The majority of MPs were under 50μm in size and were primarily in fragment form.Operational activities such as ventilation and waste handling were identified to amplify the airborne spread of MPs.The atmospheric concentrations of MPs peaked seasonally,with concentrations of 28.25 n/m3 in summer and 3.90 n/m^(3) in winter,and the spatial dispersion ranged from 14.98 to 124.08 km^(2) per station.This study highlights that MSW storage sites are substantial yet overlooked sources of MP pollution,where wall surfaces play a critical role in MP adsorption and dispersal.The implementation of robust management and cleaning protocols is essential to mitigate the environmental footprint of MPs emanating from these locations.This study also provides a typical case for the precise prevention and control of MPs in the environment.展开更多
文摘The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.
基金supported by the International Science & Technology Cooperation Program of China(2010DFA92720)the International Scientific-Technical Center Project (K-463)the project 07N. (4.2.3)"Study of the ecosystem of disturbed lands and soil-forming processes on remediated phytotoxic dumps in EKR" and "Soil formation and evaluation of soilecological functions in techno-disturbed landscapes"
文摘This paper studied the contents of heavy metals and their accumulation in the disturbed landscapes in ore deposits of East Kazakhstan. A total of 14 sites were examined in Zyrynovsky and Tishinsk deposits and Ridder town, and 50 soil samples were taken. Results indicated that the contents of heavy metals in the soil reached the maximum permissible concentration. Emissions of the zinc plant negatively affected the soil of nearby territories. In the remediated areas, a high concentration of heavy metals was observed at a depth where the bulk soil borders the rock. Accumulation of heavy metals on the surface of the remediated areas occurred due to biological accumulation in the plant. Plants transmitted heavy elements through the root system to the upper vegetative organs, making them accumulate in the upper layers of the soil. The heavy metals migrated and accumulated from the lower layers to the surface layers of the soil. The absence of soil meso-fauna resulted in the contamination of soil by heavy metals. The analysis of water samples, taken from the waste storages and the waste waters with heavy metals in the Zyryanovsk deposit and Ridder town, revealed severe water contamination.
基金supported by the National Basic Research Program (973) of China (No. 2012CB719801)the National Natural Sceince Foundation of China (Nos. 51378375, 51178327+2 种基金 21177096)the Fundamental Research Funds for Central Universities (No. 0400219272)the Collaborative Innovation Center for Regional Environmental Quality
文摘Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1,2, 3, 4, 5, 7, and 12 days, and then fed into a methanogenic reactor for a biochemical methane potential(BMP) test lasting up to 60 days. Relative to the methane production of food waste stored for 0–1 day(285–308 m L/g-added volatile solids(VSadded)), that after2–4 days and after 5–12 days of storage increased to 418–530 and 618–696 m L/g-VSadded,respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5–7 days of storage of food waste in anaerobic digestion treatment plants.
基金supported by the National Natural Science Foundation of China(Nos.41977331 and 42177203).
文摘Municipal solid waste(MSW)storage sites are potential and overlooked contributors to microplastic(MP)pollution.Herein,the distribution and dispersion characteristics of MPs at MSW storage sites were investigated through modeling,sampling analysis,and prediction methodologies.The results indicated a notable adsorption phenomenon of MPs on smooth surfaces within such sites,achieving high saturation levels and making MPs prone to re-release by airflow disturbance.Quantitative analysis revealed that the MP concentrations on these surfaces varied from 4.48×10^(5) to 1.90×10^(6) n/m^(2) and that MPs predominantly accumulated in the corner areas.Notably,MP accumulation on wall surfaces can be reduced by 76.4%using washing procedures.The majority of MPs were under 50μm in size and were primarily in fragment form.Operational activities such as ventilation and waste handling were identified to amplify the airborne spread of MPs.The atmospheric concentrations of MPs peaked seasonally,with concentrations of 28.25 n/m3 in summer and 3.90 n/m^(3) in winter,and the spatial dispersion ranged from 14.98 to 124.08 km^(2) per station.This study highlights that MSW storage sites are substantial yet overlooked sources of MP pollution,where wall surfaces play a critical role in MP adsorption and dispersal.The implementation of robust management and cleaning protocols is essential to mitigate the environmental footprint of MPs emanating from these locations.This study also provides a typical case for the precise prevention and control of MPs in the environment.