[Objective] This study aimed to study the effects of different picking time and storage environment on fruit quality of a pear cultivar Xinlin No.7 and the relationship between storage environment and fruit quality, s...[Objective] This study aimed to study the effects of different picking time and storage environment on fruit quality of a pear cultivar Xinlin No.7 and the relationship between storage environment and fruit quality, so as to provide a theoretical basis for storage and preservation of Xinli No.7. [Method] The fruits of Xinli NO.7 were picked up in August (optimal) and September respectively and then stored in room, cellar and freezer, respectively. The dynamics in temperature, humidity, CO2 concentration, fruit weight loss rate, pericarp chlorophyll content and fruit interior quality were determined. [Result] The environment differed significantly among different storage methods. In room and cellar, the temperature showed a downward trend, and the humidity decreased after early-mid October. The CO2 concentration changed steadily, and increased rapidly in cellar after December. In freezer, the temperature and humidity changed steadily, and the CO2 concentration increased after October. The changes in quality of the fruits harvested in August and September were similar. There was a certain correlation between storage environment and fruit quality of Xinli No.7. In room and cellar, the variation trends of tem- perature and humidity were consistent with those of chlorophyll content, fruit hardness and titratable acid content with positive correlations, but were opposite from those of fruit weight loss rate, soluble solids content and soluble sugar content with negative correlations. In freezer, the CO2 concentration was closely related to the changes in fruit quality. Its variation trend was consistent with those of fruit weight loss rate and soluble solids content, but was opposite from those of pericarp chlorophyll content, fruit firmness, soluble sugar content and titratable acid content. The differences in some of the traits reached significant levels (P〈0.05, P〈0.01). [Conclusion] With the extension of storage time, the temperature, humidity and CO2 concentration changed according to different patterns among different storage methods. The changes in fruit quality of Xinli NO.7 were related to the storage environment, especially to the temperature, to a certain extent.展开更多
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R...Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.展开更多
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this...Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.展开更多
Reverting to nature as a major arsenals in a universal fight against Climate Change impact and loss of biodiversity, the United Nations Convention to Combat Desertification (UNCCD), views sustainable Land use and Fore...Reverting to nature as a major arsenals in a universal fight against Climate Change impact and loss of biodiversity, the United Nations Convention to Combat Desertification (UNCCD), views sustainable Land use and Forest (the main crux of the Glasgow declaration 2021) as the way to go. Forest conservation, protection and management in the context of REDD+ would guarantee sustainable ecosystem and mitigate climate change impacts. At National and subnational levels, the Nigerian REDD+ readiness scheme holds out hope for environmental sustainability. This study throws light into the historical background of trends in land use forest change in Nigeria, and places Nigeria on a “red” stage 3 (Low Forest Cover, High Deforestation Rate-LFHD) status while maintaining optimism that with REDD+ properly implemented in Nigeria, Stage 4: Low forest cover, Low Deforestation Rates (LFLD) and Stage 5: Low forest cover, Negative Deforestation Rates (LFND) can be achieved by 2030 and 2050 respectively, if the trio of reforestation, afforestation and natural restoration is practiced as a matter of national policy and subnational implementation within the context of REDD+. Four (4) broad drivers of deforestation and forest degradation were identified as direct, indirect, pre-disposing and planned /unplanned. The paper concludes that a viable pathway to sustainable environmental management is appropriate monitoring and evaluation of land use and forest dynamics in the context of REDD+.展开更多
A 70 MPa hydrogen environment fatigue test system has been designed and applied in the manufacture of a hydrogen storage vessel. The key equipment is a 80 MPa flat steel ribbon wound high pressure hydrogen storage ves...A 70 MPa hydrogen environment fatigue test system has been designed and applied in the manufacture of a hydrogen storage vessel. The key equipment is a 80 MPa flat steel ribbon wound high pressure hydrogen storage vessel. A reasonable stress distribution has been realized, which is low stress on the liner of the pressure vessel and even stress on the flat ribbon layers. This optimal stress distribution is achieved through the adjustment of the prestress in flat steel ribbons. A control system for the fatigue test system has also been designed. It consists of a double control model, manual control and automatic control, to satisfy different experiment requirements. The system is the only one which can be used in the real hydrogen environmental fatigue test system in China. An experiment for a 70 MPa onboard composite material hydrogen vessel has been carried out on the system. The experimental results from this test are in close agreement with the practical operating conditions.展开更多
Many metabolites in leaf tissue disturbed plant genomic DNA isolation and always varied when leaves was harvested from different environments. Objective of this study was to investigate whether season, environment str...Many metabolites in leaf tissue disturbed plant genomic DNA isolation and always varied when leaves was harvested from different environments. Objective of this study was to investigate whether season, environment stress and refrigerated storage affect genomic DNA isolation of tung tree leaves. Five types of young leaves and two DNA isolation protocols, the recycling CTAB protocol I and II, were adopted to carry out the experiment. Our results showed that both leaf type and protocol affected DNA isolation of tung tree. Using the recycling CTAB protocol II, though little DNA were obtained from three types of young leaves, the other two have satisfying results. Whereas the recycling CTAB protocol I could produce high yield genomic DNA from all the five types of young leaves. All the detectable DNA samples in agarose gel electrophoresis were good templates for PCR reaction. Season, environment stress and refrigerated storage had a big effect on genomic DNA isolation of tung tree. The recycling CTAB protocol I was proved to be an effective and universal protocol for DNA isolation of tung tree. Five types of young leaves could all act as the tissue for isolation of genomic DNA, but the summer healthy young leaves without long-time refrigerated storage are the best. The optimal leaf tissue will benefit DNA isolation of plant species.展开更多
In this paper, we research on the research on the mass structured data storage and sorting algorithm and methodology for SQL database under the big data environment. With the data storage market development and center...In this paper, we research on the research on the mass structured data storage and sorting algorithm and methodology for SQL database under the big data environment. With the data storage market development and centering on the server, the data will store model to data- centric data storage model. Storage is considered from the start, just keep a series of data, for the management system and storage device rarely consider the intrinsic value of the stored data. The prosperity of the Internet has changed the world data storage, and with the emergence of many new applications. Theoretically, the proposed algorithm has the ability of dealing with massive data and numerically, the algorithm could enhance the processing accuracy and speed which will be meaningful.展开更多
The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenya...The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.展开更多
The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of sev...The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.展开更多
The robust principal component analysis (RPCA) is a technique of multivariate statistics to assess the social and economic environment quality. This paper aims to explore a RPCA algorithm to analyze the spatial hete...The robust principal component analysis (RPCA) is a technique of multivariate statistics to assess the social and economic environment quality. This paper aims to explore a RPCA algorithm to analyze the spatial heterogeneity of social and economic environment of land uses (SEELU). RPCA supplies one of the most efficient methods to derive the most important components or factors affecting the regional difference of the social and economic environment. According to the spatial distributions of the levels of SEELU,the total land resources of China were divided into eight zones numbered by Ⅰ to Ⅷ which spatially referred to the eight levels of SEELU.展开更多
Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found...Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found on the estimation ofthis storage after cultivated field converted into woodland or grassland, especially in small scales. This study is aimed toinvestigate the dynamics of SOC concentration, its storage and carbon /nitrogen (C/N) ratio in an aquic brown soil at theShenyang Experimental Station of Ecology, Chinese Academy of Sciences under four land use patterns over 14 years. Thefour land use patterns were paddy field (PF), maize field (MF), fallow field (FF) and woodland (WL). In each pedon at 0-150cm depth, soil samples were collected from ten layers. The results showed that the profile distribution of SOC was differentunder different land uses, indicating the effect of land use on SOC. Soil organic carbon was significantly related with soiltotal N, and the correlation was slightly closer in nature ecosystems (with R2=0.990 and P<0.001 in both WL and FF, n=30)than in agroecosystems (with R2=0.976 and P<0.001 in PF, and R2=0.980 and P<0.001 in MF, n=30). The C/N ratio in theprofiles decreased generally with depth under the four land use patterns, and was comparatively higher in WL and lowerin PF. The C/N ratio of the FF was closer to that in the same soil depths of MF than to that of PF. Within 100 cm depth, theannual sequestration of SOC was 4.25, 2.87, and 4.48 t ha-1 more in WL than in PF, MF and FF, the annual SOC increasingrate being 6.15, 3.26, and 5.09 % higher, respectively. As a result, the SOC storage was significantly greater in WL than inany of the other three land use patterns, P=0.001, 0.008, and 0.008 as compared with PF, MF, and FF, respectively, whilethere was no significant difference among the other three land uses. It is suggested that woodland has the potential tomake a significant contribution to C storage and environmental quality.展开更多
Land surface area estimation can provide basic information for accurately estimating vegetation carbon storage under complex terrain. This study selected China, a country dominated by mountains, as an example, and cal...Land surface area estimation can provide basic information for accurately estimating vegetation carbon storage under complex terrain. This study selected China, a country dominated by mountains, as an example, and calculated terrestrial vegetation carbon storage(VCS) for 2000 and 2015 using land surface area and traditional ellipsoid area. The land surface area is estimated by a triangular network on the high precision digital elevation model.The results showed that: 1) The VCS estimated by the surface area measurement in 2000 and 2015 were 0.676 and0.692 Pg C(1 Pg = 1015 g) higher than the VCS calculated using the ellipsoid area, respectively. 2) As the elevation increases, the differences between VCS estimated by surface area measurement and ellipsoid area measurement are expanding. Specially, a clear gap was present starting from an elevation of 500 m, with the relative error exceeds8.99%. 3) The total amount of carbon emitted due to land use change reached 0.114 Pg C. The conversions of forestland and grassland to other land use type are the main reasons of the loss of vegetation carbon storage, resulting in a total amount of biomass carbon storage decreased by 0.942 and 0.111 Pg C, respectively. This study was a preliminary exploration of incorporating land surface area as a factor in resource estimation, which can help more accurately understand the status of resources and the environment in the region.展开更多
Land use changes have significant impacts on the carbon balance in an urban ecosystem.When there is rapid development in urbanizing regions,land use changes have a dramatic effect on vegetation carbon storage(VCS).Thi...Land use changes have significant impacts on the carbon balance in an urban ecosystem.When there is rapid development in urbanizing regions,land use changes have a dramatic effect on vegetation carbon storage(VCS).This study investigates the impact of land use change on VCS in a period of rapid urbanization in Hangzhou,China.The results show that:1)from 2000 to 2015,land use in Hangzhou underwent huge changes,mainly reflected in decrease in cropland and wetland and the increased settlement.More than 34.58%of the land was transformed,and the land use changes are primarily characterized by a significant decrease in cropland due to the occupation by settlement.2)over the 15 years,changes in land use led to a decrease of 3.93×10^(5) t of VCS in the urban ecosystem.The large-scale transformation of cropland and wetland,which have a comparatively high carbon density,into land for settlement exerted a negative impact on VCS.3)The central city,which with the Circle-E/I/O mode,had the lowest comprehensive land use dynamic degree,leading to moderate land use change and an increase in VCS;Yuhang and Xiaoshan,which with Multicore-E/O/I mode and Fan-E/O/I modes,had a higher comprehensive land use dynamic degree,drastic changes in land use,and a decrease in VCS.This study proposes a reliable method of estimating changes in VCS,clarifies the relationship between land use change and VCS during rapid urbanization,and provides recommendations for sustainable urban development.展开更多
In this paper we adopt annual land use conditions change data, land sifting data, social, economic and population data and environment information of nine districts and four counties in Xi'an city from 1980 to 2000 t...In this paper we adopt annual land use conditions change data, land sifting data, social, economic and population data and environment information of nine districts and four counties in Xi'an city from 1980 to 2000 to analyze its structural and degree change of land use since the 1980s, and calculate the benefits and transformation of land use type. The results show that the non-agricultural land increased rapidly, especially the urban and rural residential spots and industrial and mining (RIM) land use increased mostly rapidly, an increase of 64%. Meanwhile, the intensity of land exploitation was accelerating, land was transformed to industries with better benefit and areas experiencing faster urbanization process. By analyzing the harmonious degree of land exploitation in economic and environmental aspects, we find out that the land use imbalance mainly existed in the municipal area of Xi'an, and the imbalance index of land use based on GDP and non-agricultural population were respectively 12.37 and 14.67 in 2000, which were far higher than those in other regions. Nevertheless the environmental harmonious degree in the municipal area of Xi'an ranges between 0.6 and 0.8, which was better than that of suburban area. Some proposals addressing to the problems of harmonious level in all scales, resources utilization, projects management and feasibility analysis and intensive urbanization are also put forward.展开更多
This paper is aimed to analyze the current situation and problems about land use of various karst environments via field survey,documentation and comparison methods,and to make reasonable recommendations about land us...This paper is aimed to analyze the current situation and problems about land use of various karst environments via field survey,documentation and comparison methods,and to make reasonable recommendations about land use and management for different karst types in a bid to provide theoretical and practical basis for optimization of karst land use and the comprehensive control of karst rock desertification.The results show that,①as the bare karst areas are lack of water and soil and highly vulnerable to droughts and floods,land utilization in such areas should follow the principles of soil and water conservation and ecological restoration,emphasize both the ecological benefit and the economic benefits and reasonably configure the land resources to achieve virtuous circle;②in covered karst areas,the most important task is to take measures to prevent the appearance of secondary karst rock desertification,water exhaustion and karst collapse;③the buried karst areas shall mainly focus on prevention of overlaying sand shale collapse,and possible pollution of deep karst water and the surface land resulted from exploration and exploitation of oil and gas and geothermal water.④The final conclusion is that features and problems of land utilization of the three karst types are different from each other,and that the general principle for land use in karst regions shall be based on the local conditions.展开更多
Development and use of controlled release fertilizer (CRF) in southern China, potential advantages of CRF in increasing rice yield and nutrient use efficiency were introduced, as well as its role of minimizing rice fi...Development and use of controlled release fertilizer (CRF) in southern China, potential advantages of CRF in increasing rice yield and nutrient use efficiency were introduced, as well as its role of minimizing rice field’s environmental contamination was discussed. Meanwhile, some suggestions were proposed.展开更多
Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for ...Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.展开更多
Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a numbe...Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.展开更多
Large-scale development of urban land use has led to change of a variety of natural processes and ecological processes, resulting in complex eco-environmental consequences. The objective of this study was to analyze t...Large-scale development of urban land use has led to change of a variety of natural processes and ecological processes, resulting in complex eco-environmental consequences. The objective of this study was to analyze the urban land use and its impact on air environment effect in Chengdu, western China from 1992 to 2008 following the RS (Remote Sensing) and GIS technique. The environmental effects data of urban land use was extracted and analyzed by overlaying layers of urban land use and the density of nitrogen dioxide and total suspended particulate matter in sampling points data concerning to the air quality of the environment in Chengdu based on GIS spatial analysis method. The results show that the main feature of urban land use change was substantial reduction of cultivated land and construction land and forest land increased significantly within the study area from1992 to 2008. The temporal-spatial change was notable in study period time. Land use has a significant impact on urban air environment, the chroma change of nitrogen dioxide derived from forest land was obvious, the area occupied by different nitrogen dioxide chroma was the largest. The urban land use impact on the highest class chroma of total suspended particulate matter was notable and its area was the greatest. The results show also the spatial distribution of nitrogen dioxide chroma and total suspended particulate matter chroma in study area is reduced following from Qingbaijiang District-Xindu District-downtown to both sides. The spatial distribution of industry, mining and traffic land is basically the same chroma spatial distribution. Therefore, the results of this study provide a scientific basis for improvement air environment quality, the urban sustainable development and a scientific response for decisions from the municipal governments.展开更多
From the land use and ecological environment of Hefei Economic Circle,this paper established two sets of subsystem evaluation indicator system. It separately determined the weight coefficient of indicators in two indi...From the land use and ecological environment of Hefei Economic Circle,this paper established two sets of subsystem evaluation indicator system. It separately determined the weight coefficient of indicators in two indicator system. Using the coordination degree model,it made a scientific evaluation and analysis of coordinated development of land use and ecological environment in Hefei Economic Circle. Finally,on the basis of analysis results,it came up with pertinent recommendations for coordinated development of land use and ecological environment in Hefei Economic Circle.展开更多
文摘[Objective] This study aimed to study the effects of different picking time and storage environment on fruit quality of a pear cultivar Xinlin No.7 and the relationship between storage environment and fruit quality, so as to provide a theoretical basis for storage and preservation of Xinli No.7. [Method] The fruits of Xinli NO.7 were picked up in August (optimal) and September respectively and then stored in room, cellar and freezer, respectively. The dynamics in temperature, humidity, CO2 concentration, fruit weight loss rate, pericarp chlorophyll content and fruit interior quality were determined. [Result] The environment differed significantly among different storage methods. In room and cellar, the temperature showed a downward trend, and the humidity decreased after early-mid October. The CO2 concentration changed steadily, and increased rapidly in cellar after December. In freezer, the temperature and humidity changed steadily, and the CO2 concentration increased after October. The changes in quality of the fruits harvested in August and September were similar. There was a certain correlation between storage environment and fruit quality of Xinli No.7. In room and cellar, the variation trends of tem- perature and humidity were consistent with those of chlorophyll content, fruit hardness and titratable acid content with positive correlations, but were opposite from those of fruit weight loss rate, soluble solids content and soluble sugar content with negative correlations. In freezer, the CO2 concentration was closely related to the changes in fruit quality. Its variation trend was consistent with those of fruit weight loss rate and soluble solids content, but was opposite from those of pericarp chlorophyll content, fruit firmness, soluble sugar content and titratable acid content. The differences in some of the traits reached significant levels (P〈0.05, P〈0.01). [Conclusion] With the extension of storage time, the temperature, humidity and CO2 concentration changed according to different patterns among different storage methods. The changes in fruit quality of Xinli NO.7 were related to the storage environment, especially to the temperature, to a certain extent.
基金Under the auspices of the National Natural Science Foundation of China(No.41971219,41571168)Natural Science Foundation of Hunan Province(No.2020JJ4372)Philosophy and Social Science Fund Project of Hunan Province(No.18ZDB015)。
文摘Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.
基金supported by the Innovation Projects for Overseas Returnees of Ningxia Hui Autonomous Region-Study on Multi-Scenario Land Use Optimization and Carbon Storage in the Ningxia Section of Yellow River Basin(202303)the National Natural Science Foundation of China(42067022,41761066)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC03024)。
文摘Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.
文摘Reverting to nature as a major arsenals in a universal fight against Climate Change impact and loss of biodiversity, the United Nations Convention to Combat Desertification (UNCCD), views sustainable Land use and Forest (the main crux of the Glasgow declaration 2021) as the way to go. Forest conservation, protection and management in the context of REDD+ would guarantee sustainable ecosystem and mitigate climate change impacts. At National and subnational levels, the Nigerian REDD+ readiness scheme holds out hope for environmental sustainability. This study throws light into the historical background of trends in land use forest change in Nigeria, and places Nigeria on a “red” stage 3 (Low Forest Cover, High Deforestation Rate-LFHD) status while maintaining optimism that with REDD+ properly implemented in Nigeria, Stage 4: Low forest cover, Low Deforestation Rates (LFLD) and Stage 5: Low forest cover, Negative Deforestation Rates (LFND) can be achieved by 2030 and 2050 respectively, if the trio of reforestation, afforestation and natural restoration is practiced as a matter of national policy and subnational implementation within the context of REDD+. Four (4) broad drivers of deforestation and forest degradation were identified as direct, indirect, pre-disposing and planned /unplanned. The paper concludes that a viable pathway to sustainable environmental management is appropriate monitoring and evaluation of land use and forest dynamics in the context of REDD+.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2007AA05Z122)
文摘A 70 MPa hydrogen environment fatigue test system has been designed and applied in the manufacture of a hydrogen storage vessel. The key equipment is a 80 MPa flat steel ribbon wound high pressure hydrogen storage vessel. A reasonable stress distribution has been realized, which is low stress on the liner of the pressure vessel and even stress on the flat ribbon layers. This optimal stress distribution is achieved through the adjustment of the prestress in flat steel ribbons. A control system for the fatigue test system has also been designed. It consists of a double control model, manual control and automatic control, to satisfy different experiment requirements. The system is the only one which can be used in the real hydrogen environmental fatigue test system in China. An experiment for a 70 MPa onboard composite material hydrogen vessel has been carried out on the system. The experimental results from this test are in close agreement with the practical operating conditions.
文摘Many metabolites in leaf tissue disturbed plant genomic DNA isolation and always varied when leaves was harvested from different environments. Objective of this study was to investigate whether season, environment stress and refrigerated storage affect genomic DNA isolation of tung tree leaves. Five types of young leaves and two DNA isolation protocols, the recycling CTAB protocol I and II, were adopted to carry out the experiment. Our results showed that both leaf type and protocol affected DNA isolation of tung tree. Using the recycling CTAB protocol II, though little DNA were obtained from three types of young leaves, the other two have satisfying results. Whereas the recycling CTAB protocol I could produce high yield genomic DNA from all the five types of young leaves. All the detectable DNA samples in agarose gel electrophoresis were good templates for PCR reaction. Season, environment stress and refrigerated storage had a big effect on genomic DNA isolation of tung tree. The recycling CTAB protocol I was proved to be an effective and universal protocol for DNA isolation of tung tree. Five types of young leaves could all act as the tissue for isolation of genomic DNA, but the summer healthy young leaves without long-time refrigerated storage are the best. The optimal leaf tissue will benefit DNA isolation of plant species.
文摘In this paper, we research on the research on the mass structured data storage and sorting algorithm and methodology for SQL database under the big data environment. With the data storage market development and centering on the server, the data will store model to data- centric data storage model. Storage is considered from the start, just keep a series of data, for the management system and storage device rarely consider the intrinsic value of the stored data. The prosperity of the Internet has changed the world data storage, and with the emergence of many new applications. Theoretically, the proposed algorithm has the ability of dealing with massive data and numerically, the algorithm could enhance the processing accuracy and speed which will be meaningful.
文摘The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.
文摘The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.
基金Supported by the National Scientific Foundation of China(70873118 70821140353 )+4 种基金the Chinese Academy of Sciences(KZCX2-YW-305-2 KZCX2-YW-326-1)the Ministry of Science and Technology of China ( 2006DFB919201 2008BAC43B012008BAK47B02)~~
文摘The robust principal component analysis (RPCA) is a technique of multivariate statistics to assess the social and economic environment quality. This paper aims to explore a RPCA algorithm to analyze the spatial heterogeneity of social and economic environment of land uses (SEELU). RPCA supplies one of the most efficient methods to derive the most important components or factors affecting the regional difference of the social and economic environment. According to the spatial distributions of the levels of SEELU,the total land resources of China were divided into eight zones numbered by Ⅰ to Ⅷ which spatially referred to the eight levels of SEELU.
基金This work was supported by the grants of the Know-ledge Innovation Program of the Chinese Academy of Sciences(KZCX2-413)the fund of Shenyang Experimental Station of Ecology,Chinese Academy of Sciences(SYZ0204).
文摘Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found on the estimation ofthis storage after cultivated field converted into woodland or grassland, especially in small scales. This study is aimed toinvestigate the dynamics of SOC concentration, its storage and carbon /nitrogen (C/N) ratio in an aquic brown soil at theShenyang Experimental Station of Ecology, Chinese Academy of Sciences under four land use patterns over 14 years. Thefour land use patterns were paddy field (PF), maize field (MF), fallow field (FF) and woodland (WL). In each pedon at 0-150cm depth, soil samples were collected from ten layers. The results showed that the profile distribution of SOC was differentunder different land uses, indicating the effect of land use on SOC. Soil organic carbon was significantly related with soiltotal N, and the correlation was slightly closer in nature ecosystems (with R2=0.990 and P<0.001 in both WL and FF, n=30)than in agroecosystems (with R2=0.976 and P<0.001 in PF, and R2=0.980 and P<0.001 in MF, n=30). The C/N ratio in theprofiles decreased generally with depth under the four land use patterns, and was comparatively higher in WL and lowerin PF. The C/N ratio of the FF was closer to that in the same soil depths of MF than to that of PF. Within 100 cm depth, theannual sequestration of SOC was 4.25, 2.87, and 4.48 t ha-1 more in WL than in PF, MF and FF, the annual SOC increasingrate being 6.15, 3.26, and 5.09 % higher, respectively. As a result, the SOC storage was significantly greater in WL than inany of the other three land use patterns, P=0.001, 0.008, and 0.008 as compared with PF, MF, and FF, respectively, whilethere was no significant difference among the other three land uses. It is suggested that woodland has the potential tomake a significant contribution to C storage and environmental quality.
基金Under the auspices of the Fundamental Research Funds for the Central Universities(No.2019kfyXJJS026,2019QNA6024)
文摘Land surface area estimation can provide basic information for accurately estimating vegetation carbon storage under complex terrain. This study selected China, a country dominated by mountains, as an example, and calculated terrestrial vegetation carbon storage(VCS) for 2000 and 2015 using land surface area and traditional ellipsoid area. The land surface area is estimated by a triangular network on the high precision digital elevation model.The results showed that: 1) The VCS estimated by the surface area measurement in 2000 and 2015 were 0.676 and0.692 Pg C(1 Pg = 1015 g) higher than the VCS calculated using the ellipsoid area, respectively. 2) As the elevation increases, the differences between VCS estimated by surface area measurement and ellipsoid area measurement are expanding. Specially, a clear gap was present starting from an elevation of 500 m, with the relative error exceeds8.99%. 3) The total amount of carbon emitted due to land use change reached 0.114 Pg C. The conversions of forestland and grassland to other land use type are the main reasons of the loss of vegetation carbon storage, resulting in a total amount of biomass carbon storage decreased by 0.942 and 0.111 Pg C, respectively. This study was a preliminary exploration of incorporating land surface area as a factor in resource estimation, which can help more accurately understand the status of resources and the environment in the region.
基金Under the auspices of National Natural Science Foundation of China(No.41871216)。
文摘Land use changes have significant impacts on the carbon balance in an urban ecosystem.When there is rapid development in urbanizing regions,land use changes have a dramatic effect on vegetation carbon storage(VCS).This study investigates the impact of land use change on VCS in a period of rapid urbanization in Hangzhou,China.The results show that:1)from 2000 to 2015,land use in Hangzhou underwent huge changes,mainly reflected in decrease in cropland and wetland and the increased settlement.More than 34.58%of the land was transformed,and the land use changes are primarily characterized by a significant decrease in cropland due to the occupation by settlement.2)over the 15 years,changes in land use led to a decrease of 3.93×10^(5) t of VCS in the urban ecosystem.The large-scale transformation of cropland and wetland,which have a comparatively high carbon density,into land for settlement exerted a negative impact on VCS.3)The central city,which with the Circle-E/I/O mode,had the lowest comprehensive land use dynamic degree,leading to moderate land use change and an increase in VCS;Yuhang and Xiaoshan,which with Multicore-E/O/I mode and Fan-E/O/I modes,had a higher comprehensive land use dynamic degree,drastic changes in land use,and a decrease in VCS.This study proposes a reliable method of estimating changes in VCS,clarifies the relationship between land use change and VCS during rapid urbanization,and provides recommendations for sustainable urban development.
基金Key scientific research project of Shaanxi Normal University Natural Science Basic Research Plan in Shaanxi Province of China, No.2004D04
文摘In this paper we adopt annual land use conditions change data, land sifting data, social, economic and population data and environment information of nine districts and four counties in Xi'an city from 1980 to 2000 to analyze its structural and degree change of land use since the 1980s, and calculate the benefits and transformation of land use type. The results show that the non-agricultural land increased rapidly, especially the urban and rural residential spots and industrial and mining (RIM) land use increased mostly rapidly, an increase of 64%. Meanwhile, the intensity of land exploitation was accelerating, land was transformed to industries with better benefit and areas experiencing faster urbanization process. By analyzing the harmonious degree of land exploitation in economic and environmental aspects, we find out that the land use imbalance mainly existed in the municipal area of Xi'an, and the imbalance index of land use based on GDP and non-agricultural population were respectively 12.37 and 14.67 in 2000, which were far higher than those in other regions. Nevertheless the environmental harmonious degree in the municipal area of Xi'an ranges between 0.6 and 0.8, which was better than that of suburban area. Some proposals addressing to the problems of harmonious level in all scales, resources utilization, projects management and feasibility analysis and intensive urbanization are also put forward.
基金Supported by the Fundamental Research Funds for the Central Universities(XDJK2011C048)
文摘This paper is aimed to analyze the current situation and problems about land use of various karst environments via field survey,documentation and comparison methods,and to make reasonable recommendations about land use and management for different karst types in a bid to provide theoretical and practical basis for optimization of karst land use and the comprehensive control of karst rock desertification.The results show that,①as the bare karst areas are lack of water and soil and highly vulnerable to droughts and floods,land utilization in such areas should follow the principles of soil and water conservation and ecological restoration,emphasize both the ecological benefit and the economic benefits and reasonably configure the land resources to achieve virtuous circle;②in covered karst areas,the most important task is to take measures to prevent the appearance of secondary karst rock desertification,water exhaustion and karst collapse;③the buried karst areas shall mainly focus on prevention of overlaying sand shale collapse,and possible pollution of deep karst water and the surface land resulted from exploration and exploitation of oil and gas and geothermal water.④The final conclusion is that features and problems of land utilization of the three karst types are different from each other,and that the general principle for land use in karst regions shall be based on the local conditions.
基金This study was supported by National Natural Science Foundation of China (30270770) Foundation for Achievement Transfer (02EFN214301156) and PPI/PPIC-China Cooperation Project (HN-13).
文摘Development and use of controlled release fertilizer (CRF) in southern China, potential advantages of CRF in increasing rice yield and nutrient use efficiency were introduced, as well as its role of minimizing rice field’s environmental contamination was discussed. Meanwhile, some suggestions were proposed.
基金Under the auspices of National Natural Science Foundation of China (No.42171414,41771429)the Open Fund of Guangdong Enterprise Key Laboratory for Urban SensingMonitoring and Early Warning (No.2020B121202019)。
文摘Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.
文摘Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.
基金Supported by National 863 Plan Science Foundation of China(2009AA12Z12 )National Natural Science Foundation of China(40771144+4 种基金40575035)Key National Water Plan on the Water BodyContamination Control and Government (2009ZX07106-004-01-02)Research Fund of Sichuan Provincial Department of Education(09ZA088)Scientific Research Fund of Sichuan Normal University(09KYL04)Key Provincial Subject Foundation of Sichuan NormalUniversity( Human Geography)
文摘Large-scale development of urban land use has led to change of a variety of natural processes and ecological processes, resulting in complex eco-environmental consequences. The objective of this study was to analyze the urban land use and its impact on air environment effect in Chengdu, western China from 1992 to 2008 following the RS (Remote Sensing) and GIS technique. The environmental effects data of urban land use was extracted and analyzed by overlaying layers of urban land use and the density of nitrogen dioxide and total suspended particulate matter in sampling points data concerning to the air quality of the environment in Chengdu based on GIS spatial analysis method. The results show that the main feature of urban land use change was substantial reduction of cultivated land and construction land and forest land increased significantly within the study area from1992 to 2008. The temporal-spatial change was notable in study period time. Land use has a significant impact on urban air environment, the chroma change of nitrogen dioxide derived from forest land was obvious, the area occupied by different nitrogen dioxide chroma was the largest. The urban land use impact on the highest class chroma of total suspended particulate matter was notable and its area was the greatest. The results show also the spatial distribution of nitrogen dioxide chroma and total suspended particulate matter chroma in study area is reduced following from Qingbaijiang District-Xindu District-downtown to both sides. The spatial distribution of industry, mining and traffic land is basically the same chroma spatial distribution. Therefore, the results of this study provide a scientific basis for improvement air environment quality, the urban sustainable development and a scientific response for decisions from the municipal governments.
文摘From the land use and ecological environment of Hefei Economic Circle,this paper established two sets of subsystem evaluation indicator system. It separately determined the weight coefficient of indicators in two indicator system. Using the coordination degree model,it made a scientific evaluation and analysis of coordinated development of land use and ecological environment in Hefei Economic Circle. Finally,on the basis of analysis results,it came up with pertinent recommendations for coordinated development of land use and ecological environment in Hefei Economic Circle.