期刊文献+
共找到141,038篇文章
< 1 2 250 >
每页显示 20 50 100
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
1
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications
2
作者 Jung Hwan Park Srinivas Pattipaka +10 位作者 Geon-Tae Hwang Minok Park Yu Mi Woo Young Bin Kim Han Eol Lee Chang Kyu Jeong Tiandong Zhang Yuho Min Kwi-Il Park Keon Jae Lee Jungho Ryu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期468-514,共47页
This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters... This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations. 展开更多
关键词 LIGHT Light-material interaction NANOMATERIALS Energy conversion and storage devices
下载PDF
Characteristic changes in astrocyte properties during astrocyte-to-neuron conversion induced by NeuroD1/Ascl1/Dlx2
3
作者 Qing He Zhen Wang +5 位作者 Yuchen Wang Mengjie Zhu Zhile Liang Kanghong Zhang Yuge Xu Gong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第6期1801-1815,共15页
Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders.... Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors––NeuroD1, Ascl1, and Dlx2––in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore,we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4(astrocyte endfeet signal), CX43(gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into preexisting neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain. 展开更多
关键词 AQUAPORIN-4 Ascl1 ASTROCYTE cortex Dlx2 gap junction glia-to-neuron conversion neural regeneration NeuroD1 REPROGRAMMING
下载PDF
Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases
4
作者 Lifang Zhao Mingkai Zhang +4 位作者 Qimeng Li Xuemin Wang Jie Lu Ying Han Yanning Cai 《Neural Regeneration Research》 SCIE CAS 2025年第8期2373-2381,共9页
Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is k... Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results. 展开更多
关键词 Alzheimer’s disease amyloid-β diagnostic ability glial fibrillary acidic protein NEURODEGENERATION neurofilament light chain plasma biomarkers single molecule array storage time tau
下载PDF
Nanostructured energy materials for electrochemical energy conversion and storage: A review 被引量:37
5
作者 Xueqiang Zhang Xinbing Cheng Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期967-984,共18页
Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient ... Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Energy materials Lithium ion batteries Lithium sulfur batteries Lithium oxygen batteries Lithium metal SUPERCAPACITORS Oxygen reduction reaction Oxygen evolution reaction ELECTROCATALYSIS Nanostructures Energy conversion and storage
下载PDF
Laser Synthesis and Microfabrication of Micro/ Nanostructured Materials Toward Energy Conversion and Storage 被引量:12
6
作者 Lili Zhao Zhen Liu +6 位作者 Duo Chen Fan Liu Zhiyuan Yang Xiao Li Haohai Yu Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期107-154,共48页
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device... Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development. 展开更多
关键词 Laser synthesis Laser microfabrication Micro/nanostructured materials Energy conversion and storage
下载PDF
Polymer-/Ceramic-based Dielectric Composites for Energy Storage and Conversion 被引量:7
7
作者 Honghui Wu Fangping Zhuo +7 位作者 Huimin Qiao Lalitha Kodumudi Venkataraman Mupeng Zheng Shuize Wang He Huang Bo Li Xinping Mao Qiaobao Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期486-514,共29页
Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highper... Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highperformance polymer-and ceramic-based dielectric composites,and emphases are placed on capacitive energy storage and harvesting,solid-state cooling,temperature stability,electromechanical energy interconversion,and high-power applications.Emerging fabrication techniques of dielectric composites such as 3D printing,electrospinning,and cold sintering are addressed,following by highlighted challenges and future research opportunities.The advantages and limitations of the typical theoretical calculation methods,such as finite-element,phase-field model,and machine learning methods,for designing high-performance dielectric composites are discussed.This review is concluded by providing a brief perspective on the future development of composite dielectrics toward energy and electronic devices. 展开更多
关键词 COMPOSITE DIELECTRIC energy storage and conversion FERROELECTRIC
下载PDF
Novel high-entropy oxides for energy storage and conversion:From fundamentals to practical applications 被引量:6
8
作者 Zi-Yu Liu Yu Liu +4 位作者 Yujie Xu Hualiang Zhang Zongping Shao Zhenbin Wang Haisheng Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1341-1357,共17页
High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This r... High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This review presents fundamental preparations,incidental characterizations,and typical structures of HEOs.The prospective applications of HEOs in various electrochemical aspects of electrocatalysis and energy conversion-storage are also summarized,including recent developments and the general trend of HEO structure design in the catalysis containing oxygen evolution reaction(OER)and oxygen reduction reaction(ORR),supercapacitors(SC),lithium-ion batteries(LIBs),solid oxide fuel cells(SOFCs),and so forth.Moreover,this review notes some apparent challenges and multiple opportunities for the use of HEOs in the wide field of energy to further guide the development of practical applications.The influence of entropy is significant,and high-entropy oxides are expected to drive the improvement of energy science and technology in the near future. 展开更多
关键词 High-entropy oxides ELECTROCHEMISTRY Energy storage and conversion
下载PDF
Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship 被引量:6
9
作者 Jiangtian Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期86-117,共32页
The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relat... The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relations between the reaction intermediates,however,impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts.Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge.Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships,which correlate the catalytic activities with structural and electronic descriptors.This paper comprehensively reviews the benchmark descriptors for OER electrolysis,aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis.Meanwhile,the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized.Challenges,opportunities and perspectives are discussed,intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance. 展开更多
关键词 Oxygen evolution Energy conversion and storage Scaling relationship Catalytic descriptors Lattice oxygen oxidation
下载PDF
Single-atom catalysts for electrochemical energy storage and conversion 被引量:4
10
作者 Wei Ma Hao Wan +2 位作者 Lili Zhang Jin You Zheng Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期170-194,I0004,共26页
The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion. Especially, single-atom catalysts(SACs) have attracted mo... The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion. Especially, single-atom catalysts(SACs) have attracted more attention owing to their high specific surface areas and abundant active centers. This review summarizes recent synthetic strategies to fabricate SACs with different metal loadings on various supports, and the structural influence of supports on metal loading. Then, the functions of SACs are illustrated on electronic structure and electrocatalysis;the isolated SACs with an unsaturated coordination environment generally accelerate the electrocatalytic process and promote the selectivity. The applications of SACs to some typical electrocatalytic reactions are also introduced in detail, as well as to electrochemical energy storage and conversion systems. Finally, the challenges and the perspectives of SACs are discussed for future exploration. 展开更多
关键词 Single-atom catalysts Energy storage and conversion ELECTROCATALYSIS BATTERIES Fuel cells
下载PDF
A Self-supported Graphene/Carbon Nanotube Hollow Fiber for Integrated Energy Conversion and Storage 被引量:3
11
作者 Kai Liu Zilin Chen +4 位作者 Tian Lv Yao Yao Ning Li Huili Li Tao Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第5期95-105,共11页
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with... Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics. 展开更多
关键词 Carbon NANOTUBE GRAPHENE INTEGRATED ENERGY conversion ENERGY storage
下载PDF
Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials 被引量:7
12
作者 Neriman Sinan Ece Unur 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期783-789,共7页
Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulos... Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulosic agricultural waste with high initial oxygen content, hazelnut shells, were hydrothermally carbonized and converted into nanostructured ‘hydrochar’. Environmentally benign ceramic/magnesium oxide(Mg O) templating was used to introduce porosity into the hydrochar. Electrochemical performance of the resulting material(HM700) was investigated in aqueous solutions of 1 M H;SO;, 6 M KOH and1 M Na;SO;, using a three-electrode cell. HM700 achieved a high specific capacitance of 323.2 F/g in 1 M H;SO;(at 1 A/g,-0.3 to 0.9 V vs. Ag/Ag Cl) due to the contributions of oxygen heteroatoms(13.5 wt%)to the total capacitance by pseudo-capacitive effect. Moreover, a maximum energy density of 11.1 Wh/kg and a maximum power density of 3686.2 W/kg were attained for the symmetric supercapacitor employing HM700 as electrode material(1 M Na;SO;, E = 2 V), making the device promising for green supercapacitor applications. 展开更多
关键词 BIOMASS Energy storage Hierarchical porosity Hydrothermal carbonization SUPERCAPACITOR
下载PDF
A Novel Wind Energy Conversion System with Storage for Spillage Recovery 被引量:3
13
作者 J. Cheng F. Choobineh 《Journal of Power and Energy Engineering》 2015年第7期33-38,共6页
This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for ... This paper proposes a new system configuration for integrating a compressed air energy storage system with a conventional wind turbine. The proposed system recycles the mechanical spillage of blades and stores it for later electricity generation with assistance from a rotary vane machine. The configuration and operational policy is explained, and a comparative case study shows that the proposed system recovers investment costs through savings on electricity procurement and revenue through power export. 展开更多
关键词 WIND ENERGY conversion System Compressed Air ENERGY storage ROTARY VANE Machine
下载PDF
Biomass Homogeneity Reinforced Carbon Aerogels Derived Functional Phase-Change Materials for Solar–Thermal Energy Conversion and Storage 被引量:3
14
作者 Qingfeng Zhang Tingfeng Xia +12 位作者 Qihan Zhang Yucao Zhu Huanzhi Zhang Fen Xu Lixian Sun Xiaodong Wang Yongpeng Xia Xiangcheng Lin Hongliang Peng Pengru Huang Yongjin Zou Hailiang Chu Bin Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期164-176,共13页
We deviseda functional form stable compositephase-change materials(PCMs)toachieve a three-dimensional(3D)interconnectedporous carbon aerogel structure for encapsulating polyethyleneglycol(PEG).Anovelhomogeneity reinfo... We deviseda functional form stable compositephase-change materials(PCMs)toachieve a three-dimensional(3D)interconnectedporous carbon aerogel structure for encapsulating polyethyleneglycol(PEG).Anovelhomogeneity reinforced carbonaerogel witha well-interconnected porous structure was constructed bycombining a flexible carbonresource from biomass guar gum with hard-brittle carbonfrom polyimide,to overcome severeshrinkage andpoor mechanical performance of traditionalcarbon aerogel.Thesupportingcarbon aerogel-encapsulated PEG produced thenovel composite PCMswithgood structure stability andcomprehensive energy storage performance.Theresults showed thatthecomposite PCMsdisplayed awell-defined 3Dinterconnected structure,and theirenergy storage capacities were 171.5 and169.5 J/g,which changed onlyslightlyafter 100 thermalcycles,andthe compositescould maintainthe equilibrium temperature at50.0−58.1℃ for about 760.3 s.The thermal conductivityofthe compositescould reach0.62 W m^(−1) K^(−1),which effectively enhanced the thermalresponse rate.And thecomposite PCMs exhibited good leakage-proof performance andexcellent light–thermal conversion.The compressive strengthof thecomposite PCMscan improveupto 1.602 MPa.Results indicatethatthisstrategy canbe efficiently usedtodevelop novel composite PCMswithimproved comprehensive thermalperformance and high light–thermal conversion. 展开更多
关键词 carbon aerogels composite PCMs energy storage capacity solar-thermal conversion
下载PDF
A Rising 2D Star:Novel MBenes with Excellent Performance in Energy Conversion and Storage 被引量:2
15
作者 Tianjie Xu Yuhua Wang +3 位作者 Zuzhao Xiong Yitong Wang Yujin Zhou Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期94-143,共50页
As a flourishing member of the two-dimen-sional(2D)nanomaterial family,MXenes have shown great potential in various research areas.In recent years,the continued growth of interest in MXene derivatives,2D transition me... As a flourishing member of the two-dimen-sional(2D)nanomaterial family,MXenes have shown great potential in various research areas.In recent years,the continued growth of interest in MXene derivatives,2D transition metal borides(MBenes),has contributed to the emergence of this 2D material as a latecomer.Due to the excellent electrical conductivity,mechanical properties and electrical properties,thus MBenes attract more researchers’interest.Extensive experimental and theoretical studies have shown that they have exciting energy conversion and elec-trochemical storage potential.However,a comprehensive and systematic review of MBenes applications has not been available so far.For this reason,we present a comprehen-sive summary of recent advances in MBenes research.We started by summarizing the latest fabrication routes and excellent properties of MBenes.The focus will then turn to their exciting potential for energy storage and conversion.Finally,a brief summary of the challenges and opportunities for MBenes in future practical applications is presented. 展开更多
关键词 MBenes Energy storage and conversion CATALYST Anode material Machine learning
下载PDF
Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion 被引量:4
16
作者 Shuai Bi Chenbao Lu +2 位作者 Wenbei Zhang Feng Qiu Fan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期99-116,共18页
Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fiel... Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically. 展开更多
关键词 Two-dimensional polymer Nanosheet Nanoscale morphology Electrochemical performance Energy storage and conversion
下载PDF
Metal-organic framework composites for energy conversion and storage 被引量:1
17
作者 Hang Wang Na Zhang +3 位作者 Shumin Li Qinfei Ke Zhengquan Li Min Zhou 《Journal of Semiconductors》 EI CAS CSCD 2020年第9期86-98,共13页
Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOF... Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOFs still suffer from poor stability,insufficient conductivity,and low utilization of active sites.One strategy to circumvent these issues is to optimize MOFs via designing composites.Here,the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects,including two working modes:(1)MOFs with assistant components,(2)MOFs with other function components.This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion(catalysis)and storage(supercapacitor and ion battery).Finally,the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties. 展开更多
关键词 metal-organic frameworks COMPOSITES synergistic effect energy conversion energy storage
下载PDF
Magnesium-Based Materials for Energy Conversion and Storage 被引量:5
18
作者 Qian Li Xiaodong Peng Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2224-2225,共2页
The development of materials for energy conversion and storage systems is essential for the realization of the sustainable and low-carbon society for which China pledged the long-term strategic target to reach peak ca... The development of materials for energy conversion and storage systems is essential for the realization of the sustainable and low-carbon society for which China pledged the long-term strategic target to reach peak carbon dioxide(CO_(2))emissions before 2030 and achieve carbon neutrality by 2060.Because the progress in this field can improve the utilization of the intermittent harvested renewable energy. 展开更多
关键词 energy. storage CARBON
下载PDF
Graphene oxide:An emerging electromaterial for energy storage and conversion 被引量:8
19
作者 Yuheng Tian Zhichun Yu +3 位作者 Liuyue Cao Xiao Li Zhang Chenghua Sun Da-Wei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期323-344,共22页
This paper gives a comprehensive review of the recent progress on electrochemical energy storage devices using graphene oxide(GO).GO,a single sheet of graphite oxide,is a functionalised graphene,carrying many oxygen-c... This paper gives a comprehensive review of the recent progress on electrochemical energy storage devices using graphene oxide(GO).GO,a single sheet of graphite oxide,is a functionalised graphene,carrying many oxygen-containing groups.This endows GO with various unique features for versatile applications in batteries,capacitors and fuel cells.Specific applications are considered principally including use in electrodes as the active materials to enhance the performance or as substrates to diversify the structures,in solid-state electrolytes and membranes to improve the ionic conductivity and mechanical properties,and in interlayers to protect the electrodes,membranes or current collectors.Furthermore,the challenges and future prospects are discussed in the paper for encouraging further research and development of GO applications. 展开更多
关键词 Graphene oxide Electrochemical storage BATTERIES Capacitors Fuel cells
下载PDF
Boudouard reaction driven by thermal plasma for efficient CO2 conversion and energy storage 被引量:5
20
作者 Zhikai Li Tao Yang +5 位作者 Shaojun Yuan Yongxiang Yin Edwin J.Devid Qiang Huang Daniel Auerbach Aart W.Kleyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期128-134,I0006,共8页
Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worl... Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed. 展开更多
关键词 Boudouard REACTION Thermal PLASMA CO2 conversion Energy RECOVERY efficiency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部