Graphene, with unique two-dimensional form and numerous appealing properties, promises to remarkably increase the energy density and power density of electrochemical energy storage devices(EESDs),ranging from the popu...Graphene, with unique two-dimensional form and numerous appealing properties, promises to remarkably increase the energy density and power density of electrochemical energy storage devices(EESDs),ranging from the popular lithium ion batteries and supercapacitors to next-generation high-energy batteries. Here, we review the recent advances of the state-of-the-art graphene-based materials for EESDs,including lithium ion batteries, supercapacitors, micro-supercapacitors, high-energy lithium-air and lithium-sulfur batteries, and discuss the importance of the pore, doping, assembly, hybridization and functionalization of different nano-architectures in improving electrochemical performance. The major roles of graphene are highlighted as(1) a superior active material,(2) ultrathin 2D flexible support,and(3) an inactive yet electrically conductive additive. Furthermore, we address the enormous potential of graphene for constructing new-concept emerging graphene-enabled EESDs with multiple functionalities of lightweight, ultra-flexibility, thinness, and novel cell configurations. Finally, future perspectives and challenges of graphene-based EESDs are briefly discussed.展开更多
基金supported by the National Key Research and Development Program of China (2016YBF0100100, 2016YFA0200101, and 2016YFA0200200)the National Natural Science Foundation of China (51572259, 51325205, 51290273, and 51521091)+3 种基金the Natural Science Foundation of Liaoning Province (201602737)the Thousand Youth Talents Plan of China (Y5610121T3)China Postdoctoral Science Foundation (2016M601349)dedicated funds for methanol conversion from Dalian Institute of Chemical Physics, Chinese Academy of Sciences
文摘Graphene, with unique two-dimensional form and numerous appealing properties, promises to remarkably increase the energy density and power density of electrochemical energy storage devices(EESDs),ranging from the popular lithium ion batteries and supercapacitors to next-generation high-energy batteries. Here, we review the recent advances of the state-of-the-art graphene-based materials for EESDs,including lithium ion batteries, supercapacitors, micro-supercapacitors, high-energy lithium-air and lithium-sulfur batteries, and discuss the importance of the pore, doping, assembly, hybridization and functionalization of different nano-architectures in improving electrochemical performance. The major roles of graphene are highlighted as(1) a superior active material,(2) ultrathin 2D flexible support,and(3) an inactive yet electrically conductive additive. Furthermore, we address the enormous potential of graphene for constructing new-concept emerging graphene-enabled EESDs with multiple functionalities of lightweight, ultra-flexibility, thinness, and novel cell configurations. Finally, future perspectives and challenges of graphene-based EESDs are briefly discussed.