Insects are major pests of stored grains. In sub Sahara Africa, stored grain insect pests are mainly Coleoptera or Lepidoptera. In the Logone Valley, area covering the Far North Region of Cameroon and South-West of Ch...Insects are major pests of stored grains. In sub Sahara Africa, stored grain insect pests are mainly Coleoptera or Lepidoptera. In the Logone Valley, area covering the Far North Region of Cameroon and South-West of Chad, to our knowledge, the diversity of insect pests noxious to stored products is not established. These beetles and weevils (Insecta:Coleoptera) during their development depreciate food in storage, were able to destroy a whole stock in a very short period of time if no protection of stored food is made. To achieve the diversity of insect pests, inspections of granaries were done in 209 villages of Logone Valley where insect pests were collected and identified. Secondly, the stored grains were sampled in peasant's granaries of Logone Valley and reared in incubators in the Unit of Entomological Research of the University of Ngaound6r6. After their emergence, insects were removed, collected and identified. Their noxious efficiency on stored grains is done by the calculation of the density of each insect pests per gram of grains. This study indicates that 12 species of harmful insects attack cereals and leguminous grains in the Logone Valley during storage. The Bruchids were the main insect pests of legumes. Callosobruchus maculatus was the main pest of legume and attacking mainly cowpeas (34.92 bruchids/g of seed) and peanuts (20.75 bruchids/g of seed). Seven harmful species destroy the cereals. Sitophilus zeamais is the main pest of maize (15.86 weevils/g of maize) and S. oryzae, for sorghum (36.59 weevils/g of maize). Tribolium castaneum were the main secondary pest. T. castaneum infests both cereals and leguminous. This work summarizes the importance and the diversification of stored grain pests in Logone Valley. Knowing the pest diversity is an important step in the strategy to develop a friendly and ecological control method of these harmful insects.展开更多
In January 2005, the United States Environmental Protection Agency registered spinosad as a stored grain protectant. No referenced data on the efficacy of spinosad on corn in suppressing major stored-grain insects hav...In January 2005, the United States Environmental Protection Agency registered spinosad as a stored grain protectant. No referenced data on the efficacy of spinosad on corn in suppressing major stored-grain insects have been published. In this paper, we evaluated the efficacy of spinosad against seven major stored-grain insects on shelled corn in the laboratory. Insect species tested were the red flour beetle, Tribolium castaneum (Jacquelin duVal); rusty grain beetle, Cryptolestesferrugineus (Stephens); lesser grain borer, Rhyzopertha dominica (F.); sawtoothed grain beetle, Oryzaephilus surinamensis (L.); rice weevil, Sitophilus oryzae (L.); maize weevil, Sitophilus zeamais (Motschulsky); and Indian meal moth, Plodia interpunctella (Htibner). Corn kernels were treated with spinosad at 0, 0. 1, 0.5, 1, and 2 active ingredient (a.i.) mg/kg for controlling the seven species. Beetle adults or P. interpunctella eggs were introduced into each container holding 100 g of untreated or insecticide-treated corn. The seven insect species survived well on the control treatment, produced 28 to 336 progeny, and caused significant kernel damage after 49 days. On spinosad-treated corn, adult mortality of C. ferrugineus, R. dominica, 0. surinamensis, S. oryzae, and S. zeamais was 〉 98% at 1 and 2 mg/kg after 12 days. Spinosad at≥ 0.5 mg/kg completely suppressed egg-to-larval survival after 21 days and egg-to-adult emergence of P. interpunctella after 49 days, whereas 16% T. castaneum adults survived at 1 mg/kg after 12 days. Spinosad at 1 or 2 mg/kg provided complete or near complete suppression of progeny production and kernel damage of all species after 49 days. Our results indicate that spinosad at the current labeled rate of 1 mg/kg is effective against the seven stored-grain insect pests on corn.展开更多
文摘Insects are major pests of stored grains. In sub Sahara Africa, stored grain insect pests are mainly Coleoptera or Lepidoptera. In the Logone Valley, area covering the Far North Region of Cameroon and South-West of Chad, to our knowledge, the diversity of insect pests noxious to stored products is not established. These beetles and weevils (Insecta:Coleoptera) during their development depreciate food in storage, were able to destroy a whole stock in a very short period of time if no protection of stored food is made. To achieve the diversity of insect pests, inspections of granaries were done in 209 villages of Logone Valley where insect pests were collected and identified. Secondly, the stored grains were sampled in peasant's granaries of Logone Valley and reared in incubators in the Unit of Entomological Research of the University of Ngaound6r6. After their emergence, insects were removed, collected and identified. Their noxious efficiency on stored grains is done by the calculation of the density of each insect pests per gram of grains. This study indicates that 12 species of harmful insects attack cereals and leguminous grains in the Logone Valley during storage. The Bruchids were the main insect pests of legumes. Callosobruchus maculatus was the main pest of legume and attacking mainly cowpeas (34.92 bruchids/g of seed) and peanuts (20.75 bruchids/g of seed). Seven harmful species destroy the cereals. Sitophilus zeamais is the main pest of maize (15.86 weevils/g of maize) and S. oryzae, for sorghum (36.59 weevils/g of maize). Tribolium castaneum were the main secondary pest. T. castaneum infests both cereals and leguminous. This work summarizes the importance and the diversification of stored grain pests in Logone Valley. Knowing the pest diversity is an important step in the strategy to develop a friendly and ecological control method of these harmful insects.
文摘In January 2005, the United States Environmental Protection Agency registered spinosad as a stored grain protectant. No referenced data on the efficacy of spinosad on corn in suppressing major stored-grain insects have been published. In this paper, we evaluated the efficacy of spinosad against seven major stored-grain insects on shelled corn in the laboratory. Insect species tested were the red flour beetle, Tribolium castaneum (Jacquelin duVal); rusty grain beetle, Cryptolestesferrugineus (Stephens); lesser grain borer, Rhyzopertha dominica (F.); sawtoothed grain beetle, Oryzaephilus surinamensis (L.); rice weevil, Sitophilus oryzae (L.); maize weevil, Sitophilus zeamais (Motschulsky); and Indian meal moth, Plodia interpunctella (Htibner). Corn kernels were treated with spinosad at 0, 0. 1, 0.5, 1, and 2 active ingredient (a.i.) mg/kg for controlling the seven species. Beetle adults or P. interpunctella eggs were introduced into each container holding 100 g of untreated or insecticide-treated corn. The seven insect species survived well on the control treatment, produced 28 to 336 progeny, and caused significant kernel damage after 49 days. On spinosad-treated corn, adult mortality of C. ferrugineus, R. dominica, 0. surinamensis, S. oryzae, and S. zeamais was 〉 98% at 1 and 2 mg/kg after 12 days. Spinosad at≥ 0.5 mg/kg completely suppressed egg-to-larval survival after 21 days and egg-to-adult emergence of P. interpunctella after 49 days, whereas 16% T. castaneum adults survived at 1 mg/kg after 12 days. Spinosad at 1 or 2 mg/kg provided complete or near complete suppression of progeny production and kernel damage of all species after 49 days. Our results indicate that spinosad at the current labeled rate of 1 mg/kg is effective against the seven stored-grain insect pests on corn.