The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ...The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.展开更多
Traditional PID controllers are no longer suitable formagnetic-bearing-supported high-speed flywheels with significant gyroscopic effects. Becausegyroscopic effects greatly influence the stability of the flywheel roto...Traditional PID controllers are no longer suitable formagnetic-bearing-supported high-speed flywheels with significant gyroscopic effects. Becausegyroscopic effects greatly influence the stability of the flywheel rotor, especially at highrotational speeds. Velocity cross feedback and displacement cross feedback are used to overcomeharmful effects of nutation and precession modes, and stabilize the rotor at high rotational speeds.Theoretical analysis is given to show their effects. A control platform based on RTLinut and a PCis built to control the active magnetic bearing (AMB) system, and relevant results are reported.Using velocity cross feedback and displacement cross feedback in a closed loop control system, theflywheel successfully runs at over 20000 r/min.展开更多
The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A f...The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A feedback control law for attitude tracking is firstly developed by using Lyapunov approach, and then a torque based control law of the flywheel is studied. The control torque vector of the flywheel is decomposed into three parts which are orthogonal to one another by using the method of singularity value decomposition (SVD). One part is used to provide the attitude control torque, another part is used to store energy with given power, and the last part is used to accomplish wheel speed equalization to avoid wheel saturation caused by large difference among the wheel spin rates. A management scheme for energy storage power using kinetic energy feedback is proposed to keep energy balance, which can avoid wheel saturation caused by superfluous energy. Numerical simulation results demonstrate the effectiveness of the control scheme.展开更多
Flywheel Energy Storage System (FESS) is used as an energy regeneration system to help with reducing peak power requirements on RTG cranes that are used to load or unload container ships. Nevertheless, with the use of...Flywheel Energy Storage System (FESS) is used as an energy regeneration system to help with reducing peak power requirements on RTG cranes that are used to load or unload container ships. Nevertheless, with the use of FESS, Port Operator can deploy undersized generator for new RTG as this will further reduce fuel consumption. This paper presents the investigation of the amount of energy and fuel consumption that can be reduced in Rubber Tyred Gantry (RTG) cranes in container terminals by the use of simulation. In addition, Variable Speed Generator is integrated to the simulation-hybridized RTG. Simulation results reveal that the total energy saving exceeded 30% relatively to conventional RTG. A hardware-in-loop system is introduced for the purpose of validating the simulation results. The hardware components procured include a FESS, a Variable Frequency Drive (VFD) and brake resistors.展开更多
The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tra...The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.展开更多
The system presented in this paper allows the direct transfer of kinetic energy of a vehicle’s motion to a flywheel and vice-versa. For braking, a cable winds onto a pulley geared to the vehicle’s propulsion drivesh...The system presented in this paper allows the direct transfer of kinetic energy of a vehicle’s motion to a flywheel and vice-versa. For braking, a cable winds onto a pulley geared to the vehicle’s propulsion driveshaft as it unwinds from another pulley geared to the flywheel and then operates in reverse for the transfer of energy in the opposite direction. The cable windings are in one plane resulting in an effective pulley radius that increases when the cable is winding onto it and decreases when unwinding from it. Thus, an increasing driven-to-driving pulley velocity ratio is obtained during a period of energy transfer in either direction. A dynamic analysis simulating the process was developed. Its application is illustrated with a numerical solution based on specific assumed values of system parameters.展开更多
A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two str...A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.展开更多
The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vecto...The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.展开更多
The origin and substance of the tlywheel moment calculation method of inertia mo ment of crane mechanism are set forth comprehensively and systematically in this paper, that is, the nucleus or the focus ofmoment of in...The origin and substance of the tlywheel moment calculation method of inertia mo ment of crane mechanism are set forth comprehensively and systematically in this paper, that is, the nucleus or the focus ofmoment of inertia calculation is the problem of calculating convertible tlywheelmoment. It is much better for the calculation of flywheel moment of loading move mass of lifting, traveling and rotating mechanism using the low of conservation of energy, the theorem of kinetic energyfor that of radius - changing mechanism, and the law of conservation of energy for that of all parts of gearing mechanism.展开更多
Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from...Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from the shaft at a designed fall-off rotation speed, which is determined by the assembly process and the gravity. However, the two factors are ignored in the analytical method based on the Lame's equation. In this work, we conducted fall-off experiments to analyze the two factors and used the experimental data to verify the validity of the analytical method and the finite element method(FEM). The results show that FEM performs better than the analytical method in designing the falloff function of the flywheel, though FEM cannot successfully predict the strain variation with the rotational speed.展开更多
The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhi...The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.展开更多
In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM...In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.展开更多
The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the ...The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC.It also depends on the efficiency of the power take-off system(PTO).This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching.The PTO characteristics,such as the gear ratio,the flywheel inertia,and the electric generator,are analyzed in the WEC performance.Three cylindrical point absorbers are also considered in the present study.A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves.The wave energy converter(WEC)performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied.The latching control system increases the mean power.However,the increase is not significant if the parameters that characterize the WEC provide a considerable mean power.The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel.However,the gear ratio shows a more significant influence than the flywheel inertia.The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.展开更多
This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotord...This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotordynamic stability.A H-infinity optimal control synthesis procedure is defined for the permanent-magnet-biased AMB-rotor system with 4 degrees of freedom.Through the choice of design weighting functions,notch filter characteristics are incorporated within the controller to reduce AMB current components caused by rotor vibration at the synchronous frequency and higher harmonics.Experimental tests are used to validate the controller design methodology and provide comparative results on performance and efficiency.The results show that the H-infinity controller is able to achieve stable rotor levitation and reduce AMB power consumption by more than 40%(from 4.80 to 2.64 Watts)compared with the conventional PD control method.Additionally,the H-infinity controller can prevent vibrational instability of the rotor nutation mode,which is prone to occur when operating with high rotational speeds.展开更多
The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellit...The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.展开更多
To avoid the negative effects of disturbances on satellites,the characteristics of micro-vibration on flywheels are studied.Considering rotor imbalance,bearing imperfections and structural elasticity,the extended mode...To avoid the negative effects of disturbances on satellites,the characteristics of micro-vibration on flywheels are studied.Considering rotor imbalance,bearing imperfections and structural elasticity,the extended model of micro-vibration is established.In the feature extraction of micro-vibration,singular value decomposition combined with the improved Akaike Information Criterion(AIC-SVD)is applied to denoise.More robust and self-adaptable than the peak threshold denoising,AIC-SVD can effectively remove the noise components.Subsequently,the effective harmonic coefficients are extracted by the binning algorithm.The results show that the harmonic coefficients have great identification in frequency domain.Except for the fundamental frequency caused by rotor imbalance,the harmonics are also caused by the coupling of imperfections on bearing components.展开更多
Reciprocating compressors are prone to high cyclic loads. The high required performance relies on a good design focusing a torque oscillation applied by the driver. In the first part of this job, dynamic model of reci...Reciprocating compressors are prone to high cyclic loads. The high required performance relies on a good design focusing a torque oscillation applied by the driver. In the first part of this job, dynamic model of reciprocating is presented. Newton-Euler method is used to get motion equations. In the second part, numerical results are presented. Simulations are used for calculating the driving moment as function of crankshaft motion. These results illustrate the effect of the flywheel and motor on its dynamics and are used for induction motor selection and flywheel sizing for optimizing crankshaft torque fluctuation and power consumption reduction.展开更多
Permanent magnet homopolar inductor machine(PMHIM) has attracted much attention in the field of flywheel energy storage system(FESS) due to its merits of simple structure,brushless excitation, and rotor flywheel integ...Permanent magnet homopolar inductor machine(PMHIM) has attracted much attention in the field of flywheel energy storage system(FESS) due to its merits of simple structure,brushless excitation, and rotor flywheel integration. However, the air-gap flux generated by the PM cannot be adjusted, which would cause large electromagnetic losses in the standby operation state of FESS. To solve this problem, a novel mechanically adjusted variable flux permanent magnet homopolar inductor machine with rotating magnetic poles(RMP-PMHIM) is proposed in this paper. The permanent magnet poles are rotated by an auxiliary rotating device and the purpose of changing the air-gap flux is achieved. First, the structure and operation principle of the proposed RMP-PMHIM are explained. Second,the flux weakening principle of the RMP-PMHIM is analyzed and the equivalent magnetic circuit models under different flux weakening states are built. Third, the parameters of the PM and its fixed structure are optimized to obtain the good electromagnetic performance. Fourth, the electromagnetic performance, including the air-gap flux density, back-EMF, flux weakening ability, loss, etc. of the proposed RMP-PMHIM are investigated and compared. Compared with the non-rotating state of the PM of RPM-PMHIM, the air-gap flux density amplitude can be weakened by 99.95% when the PM rotation angle is 90 degrees, and the no-load core loss can be suppressed by 99.98%,which shows that the proposed RPM-PMHIM is a good candidate for the application of FESS.展开更多
基金supported by the National Key R&D Program of China(No.2022YFB3404204)the National Natural Science Foundation of China(NSFC)under Grant Nos.U2241232,U2341253 and 52375317.
文摘The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.
文摘Traditional PID controllers are no longer suitable formagnetic-bearing-supported high-speed flywheels with significant gyroscopic effects. Becausegyroscopic effects greatly influence the stability of the flywheel rotor, especially at highrotational speeds. Velocity cross feedback and displacement cross feedback are used to overcomeharmful effects of nutation and precession modes, and stabilize the rotor at high rotational speeds.Theoretical analysis is given to show their effects. A control platform based on RTLinut and a PCis built to control the active magnetic bearing (AMB) system, and relevant results are reported.Using velocity cross feedback and displacement cross feedback in a closed loop control system, theflywheel successfully runs at over 20000 r/min.
文摘The control law of the flywheel in an integrated power and attitude control system (IPACS) for a spacecraft is investigated. The flywheels are used as attitude control actuators as well as energy storage device. A feedback control law for attitude tracking is firstly developed by using Lyapunov approach, and then a torque based control law of the flywheel is studied. The control torque vector of the flywheel is decomposed into three parts which are orthogonal to one another by using the method of singularity value decomposition (SVD). One part is used to provide the attitude control torque, another part is used to store energy with given power, and the last part is used to accomplish wheel speed equalization to avoid wheel saturation caused by large difference among the wheel spin rates. A management scheme for energy storage power using kinetic energy feedback is proposed to keep energy balance, which can avoid wheel saturation caused by superfluous energy. Numerical simulation results demonstrate the effectiveness of the control scheme.
文摘Flywheel Energy Storage System (FESS) is used as an energy regeneration system to help with reducing peak power requirements on RTG cranes that are used to load or unload container ships. Nevertheless, with the use of FESS, Port Operator can deploy undersized generator for new RTG as this will further reduce fuel consumption. This paper presents the investigation of the amount of energy and fuel consumption that can be reduced in Rubber Tyred Gantry (RTG) cranes in container terminals by the use of simulation. In addition, Variable Speed Generator is integrated to the simulation-hybridized RTG. Simulation results reveal that the total energy saving exceeded 30% relatively to conventional RTG. A hardware-in-loop system is introduced for the purpose of validating the simulation results. The hardware components procured include a FESS, a Variable Frequency Drive (VFD) and brake resistors.
基金supported by National Natural Science Foundation of China (Grant No. 60704025)
文摘The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.
文摘The system presented in this paper allows the direct transfer of kinetic energy of a vehicle’s motion to a flywheel and vice-versa. For braking, a cable winds onto a pulley geared to the vehicle’s propulsion driveshaft as it unwinds from another pulley geared to the flywheel and then operates in reverse for the transfer of energy in the opposite direction. The cable windings are in one plane resulting in an effective pulley radius that increases when the cable is winding onto it and decreases when unwinding from it. Thus, an increasing driven-to-driving pulley velocity ratio is obtained during a period of energy transfer in either direction. A dynamic analysis simulating the process was developed. Its application is illustrated with a numerical solution based on specific assumed values of system parameters.
基金Supported by the Fundamental Research Funds for the Central Universities under Grants Nos. HEUCF101706 and HEUCF111705
文摘A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.
文摘The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.
文摘The origin and substance of the tlywheel moment calculation method of inertia mo ment of crane mechanism are set forth comprehensively and systematically in this paper, that is, the nucleus or the focus ofmoment of inertia calculation is the problem of calculating convertible tlywheelmoment. It is much better for the calculation of flywheel moment of loading move mass of lifting, traveling and rotating mechanism using the low of conservation of energy, the theorem of kinetic energyfor that of radius - changing mechanism, and the law of conservation of energy for that of all parts of gearing mechanism.
基金supported by the National Natural Science Foundation of China(No.51576125)
文摘Structural integrity of the flywheel of reactor coolant pump is important for safe operation of a nuclear power plant. A shrink-fit multi-ring flywheel is designed with a fall-off function, i.e., it will separate from the shaft at a designed fall-off rotation speed, which is determined by the assembly process and the gravity. However, the two factors are ignored in the analytical method based on the Lame's equation. In this work, we conducted fall-off experiments to analyze the two factors and used the experimental data to verify the validity of the analytical method and the finite element method(FEM). The results show that FEM performs better than the analytical method in designing the falloff function of the flywheel, though FEM cannot successfully predict the strain variation with the rotational speed.
文摘The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.
基金supported by the National Basic Research Program of China (Grant No. 2009CB2197)the National Natural Science Foundation of China (Grant No. 51177108)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032110066)
文摘In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.
基金The authors acknowledge the support from the Brazilian Research Council(CNPq),contract numbers 380950/2018-9(INEOF-National Institute for Ocean and River Energy)and 305657/2017-8,respectivelySpecial thanks to FAPERJ for the support of the wave energy research at the Subsea Technology Lab(COPPE),contract number E-26/202.600/2019。
文摘The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC.It also depends on the efficiency of the power take-off system(PTO).This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching.The PTO characteristics,such as the gear ratio,the flywheel inertia,and the electric generator,are analyzed in the WEC performance.Three cylindrical point absorbers are also considered in the present study.A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves.The wave energy converter(WEC)performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied.The latching control system increases the mean power.However,the increase is not significant if the parameters that characterize the WEC provide a considerable mean power.The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel.However,the gear ratio shows a more significant influence than the flywheel inertia.The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.
基金supported by Thailand Science Research and Innovation and the National Research Council of Thailand under Grant RGU6280014.
文摘This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system,where the main goals are to achieve low energy consumption and improved rotordynamic stability.A H-infinity optimal control synthesis procedure is defined for the permanent-magnet-biased AMB-rotor system with 4 degrees of freedom.Through the choice of design weighting functions,notch filter characteristics are incorporated within the controller to reduce AMB current components caused by rotor vibration at the synchronous frequency and higher harmonics.Experimental tests are used to validate the controller design methodology and provide comparative results on performance and efficiency.The results show that the H-infinity controller is able to achieve stable rotor levitation and reduce AMB power consumption by more than 40%(from 4.80 to 2.64 Watts)compared with the conventional PD control method.Additionally,the H-infinity controller can prevent vibrational instability of the rotor nutation mode,which is prone to occur when operating with high rotational speeds.
文摘The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.
基金National Natural Science Foundation of China(No.U1831123)Fundamental Research Funds for the Central Universities,China(No.2232017A3-04)。
文摘To avoid the negative effects of disturbances on satellites,the characteristics of micro-vibration on flywheels are studied.Considering rotor imbalance,bearing imperfections and structural elasticity,the extended model of micro-vibration is established.In the feature extraction of micro-vibration,singular value decomposition combined with the improved Akaike Information Criterion(AIC-SVD)is applied to denoise.More robust and self-adaptable than the peak threshold denoising,AIC-SVD can effectively remove the noise components.Subsequently,the effective harmonic coefficients are extracted by the binning algorithm.The results show that the harmonic coefficients have great identification in frequency domain.Except for the fundamental frequency caused by rotor imbalance,the harmonics are also caused by the coupling of imperfections on bearing components.
文摘Reciprocating compressors are prone to high cyclic loads. The high required performance relies on a good design focusing a torque oscillation applied by the driver. In the first part of this job, dynamic model of reciprocating is presented. Newton-Euler method is used to get motion equations. In the second part, numerical results are presented. Simulations are used for calculating the driving moment as function of crankshaft motion. These results illustrate the effect of the flywheel and motor on its dynamics and are used for induction motor selection and flywheel sizing for optimizing crankshaft torque fluctuation and power consumption reduction.
基金supported in part by the National Natural Science Foundation of China under Grant 52007055in part by the Natural Science Foundation of Hunan Province of China under Grant 2021JJ40099。
文摘Permanent magnet homopolar inductor machine(PMHIM) has attracted much attention in the field of flywheel energy storage system(FESS) due to its merits of simple structure,brushless excitation, and rotor flywheel integration. However, the air-gap flux generated by the PM cannot be adjusted, which would cause large electromagnetic losses in the standby operation state of FESS. To solve this problem, a novel mechanically adjusted variable flux permanent magnet homopolar inductor machine with rotating magnetic poles(RMP-PMHIM) is proposed in this paper. The permanent magnet poles are rotated by an auxiliary rotating device and the purpose of changing the air-gap flux is achieved. First, the structure and operation principle of the proposed RMP-PMHIM are explained. Second,the flux weakening principle of the RMP-PMHIM is analyzed and the equivalent magnetic circuit models under different flux weakening states are built. Third, the parameters of the PM and its fixed structure are optimized to obtain the good electromagnetic performance. Fourth, the electromagnetic performance, including the air-gap flux density, back-EMF, flux weakening ability, loss, etc. of the proposed RMP-PMHIM are investigated and compared. Compared with the non-rotating state of the PM of RPM-PMHIM, the air-gap flux density amplitude can be weakened by 99.95% when the PM rotation angle is 90 degrees, and the no-load core loss can be suppressed by 99.98%,which shows that the proposed RPM-PMHIM is a good candidate for the application of FESS.