A severe storm that occurred over Beijing in northern China on 23 June 2011 was simulated with two different ice crystal parameterization schemes(the DeMott scheme and Meyers scheme) by using the Regional Atmospheric ...A severe storm that occurred over Beijing in northern China on 23 June 2011 was simulated with two different ice crystal parameterization schemes(the DeMott scheme and Meyers scheme) by using the Regional Atmospheric Modeling System. Compared with the DeMott scheme, the simulation results with the Meyers scheme have the following characteristics:(1) Updrafts are stronger and more numerous;(2) The cloud is better organized and contains a greater peak of ice-phase hydrometeor mixing ratios;(3) Cloud water and hail mixing ratios increase while graupel mixing ratios decrease;(4) The surface precipitation is initially greater. However, at the end of the simulation, less precipitation is produced. In short, the differences between the two schemes are not obvious, but the De Mott scheme has a relatively more reasonable result.展开更多
The typical black storms or sand-dust storms in the northwestern China are generated and developed through an interaction between the specific large scale circulation pattern and mesoseale systems.The passing by/over ...The typical black storms or sand-dust storms in the northwestern China are generated and developed through an interaction between the specific large scale circulation pattern and mesoseale systems.The passing by/over a huge sand-abundant desert of a strong cold front with intensive frontal zone at mid and lower levels is a necessary condition for the formation and development of a black storm or a severe sand-dust storm.In order to investigate the mechanism of the sand-dust mobilization,transport and sedimentation during the black or sand-dust storms,a parameterization scheme of sand-dust source-sink terms and an equation of transport for the sand-dust were proposed and incorporated into the MM4 mesoscale model.The modified MM4 model was applied to the“May 1993”black storm case and succeeded in reproducing the evolution of the weather systems associated with the black-storm,the sand-dust concentration at surface layer and its vertical distribution,and the sand-dust sedimentation and transport.Our results show that the numerical simulating method by using a mesoscale model,with inclusion of an equation of the sand-dust transport and a parameterization scheme of the sand-dust source-sink terms,is a promising approach to study the mechanism for sand-dust mobilization,transport and sedimentation during a sand-dust storm event.展开更多
Dust emission generated by wind erosion is a basic process before the transport and deposition of dust particles. Parameterization of dust emission flux is important for accurate simulation and prediction of dust even...Dust emission generated by wind erosion is a basic process before the transport and deposition of dust particles. Parameterization of dust emission flux is important for accurate simulation and prediction of dust events. Field observation and numerical simulation are two approaches to understand the complex process of dust emission. Great progress has been made on the characteristics and mechanism of dust emission during dust storm events. This review introduces the major factors influencing dust emission and summarizes the calculation methods of several key parameters of dust emission, including the threshold friction velocity u.t, threshold wind speed Ut, streamwise saltation flux Q, and (vertical) dust emission flux F, from perspectives of both observation and parameterization. The paper also discusses the improvement, application, and validation of different dust emission schemes in dust models. Existing problems and future research directions are elaborated as well.展开更多
基金partially supported by the National Natural Science Foundation of China (Grant No. 41205099)the National Basic Research Program of China (973 Program, Grant Nos. 2014CB441403 and 2013CB430105)+1 种基金the Special Scientific Research Project of the Meteorological Public Welfare Profession of China (Grant No. GYHY201006031)the Guizhou Province Scientific Research Joint Project (Grant No. G[2013]4001)
文摘A severe storm that occurred over Beijing in northern China on 23 June 2011 was simulated with two different ice crystal parameterization schemes(the DeMott scheme and Meyers scheme) by using the Regional Atmospheric Modeling System. Compared with the DeMott scheme, the simulation results with the Meyers scheme have the following characteristics:(1) Updrafts are stronger and more numerous;(2) The cloud is better organized and contains a greater peak of ice-phase hydrometeor mixing ratios;(3) Cloud water and hail mixing ratios increase while graupel mixing ratios decrease;(4) The surface precipitation is initially greater. However, at the end of the simulation, less precipitation is produced. In short, the differences between the two schemes are not obvious, but the De Mott scheme has a relatively more reasonable result.
基金This study was supported by the National Natural Science Foundation of China under grant 49475268
文摘The typical black storms or sand-dust storms in the northwestern China are generated and developed through an interaction between the specific large scale circulation pattern and mesoseale systems.The passing by/over a huge sand-abundant desert of a strong cold front with intensive frontal zone at mid and lower levels is a necessary condition for the formation and development of a black storm or a severe sand-dust storm.In order to investigate the mechanism of the sand-dust mobilization,transport and sedimentation during the black or sand-dust storms,a parameterization scheme of sand-dust source-sink terms and an equation of transport for the sand-dust were proposed and incorporated into the MM4 mesoscale model.The modified MM4 model was applied to the“May 1993”black storm case and succeeded in reproducing the evolution of the weather systems associated with the black-storm,the sand-dust concentration at surface layer and its vertical distribution,and the sand-dust sedimentation and transport.Our results show that the numerical simulating method by using a mesoscale model,with inclusion of an equation of the sand-dust transport and a parameterization scheme of the sand-dust source-sink terms,is a promising approach to study the mechanism for sand-dust mobilization,transport and sedimentation during a sand-dust storm event.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2010CB428501)China Meteorological Administration Special Public Welfare Research Fund(GYHY201006014)+1 种基金National Natural Science Foundation of China(41075005 and 41475007)Research Fund for the Doctoral Program of Higher Education of Ministry of Education of China(20110001130010)
文摘Dust emission generated by wind erosion is a basic process before the transport and deposition of dust particles. Parameterization of dust emission flux is important for accurate simulation and prediction of dust events. Field observation and numerical simulation are two approaches to understand the complex process of dust emission. Great progress has been made on the characteristics and mechanism of dust emission during dust storm events. This review introduces the major factors influencing dust emission and summarizes the calculation methods of several key parameters of dust emission, including the threshold friction velocity u.t, threshold wind speed Ut, streamwise saltation flux Q, and (vertical) dust emission flux F, from perspectives of both observation and parameterization. The paper also discusses the improvement, application, and validation of different dust emission schemes in dust models. Existing problems and future research directions are elaborated as well.