A thermospheric circulation model in meridian plane (TCMMP) is introduced and a case study on the variations in night side thermosphere caused by energy deposition in auroral oval during a single magnetic substorm is ...A thermospheric circulation model in meridian plane (TCMMP) is introduced and a case study on the variations in night side thermosphere caused by energy deposition in auroral oval during a single magnetic substorm is expounded. Calculations show that TCMMP can correctly reflect the thermospheric thermal status and circulation patterns during storm time and the results are in agreement with previous theoretical and observational ones. This paper and other works also show the validity of TCMMP in researches on medium and large scale changes in mid- and low latitude thermosphere. Results also support strongly some related theory about the cause of ionospheric storms, expecially the negative phase storms.展开更多
National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, Chi...National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, China on August 7, 2018. The result shows that the strong convective weather occurred in peripheral subtropical high over west pacific, being caused by short wave disturbance, and surface convergence lines with positive pressure variation are corresponding to areas of short-time heavy precipitation. The degree of temperature change in cold pool caused by thunderstorm may decide the intensity of a short-time rainfall, and local topography plays an important role in extreme precipitation. Local water vapour accumulation and water vapour flux convergence in the middle and lower layers support adequate moisture condition in the process. Moving direction and development direction of mesocale convective cloud are in a line to develop the train effect, leading to local short-time heavy rain in Yulin city, Shaanxi, China.展开更多
文摘A thermospheric circulation model in meridian plane (TCMMP) is introduced and a case study on the variations in night side thermosphere caused by energy deposition in auroral oval during a single magnetic substorm is expounded. Calculations show that TCMMP can correctly reflect the thermospheric thermal status and circulation patterns during storm time and the results are in agreement with previous theoretical and observational ones. This paper and other works also show the validity of TCMMP in researches on medium and large scale changes in mid- and low latitude thermosphere. Results also support strongly some related theory about the cause of ionospheric storms, expecially the negative phase storms.
文摘National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, China on August 7, 2018. The result shows that the strong convective weather occurred in peripheral subtropical high over west pacific, being caused by short wave disturbance, and surface convergence lines with positive pressure variation are corresponding to areas of short-time heavy precipitation. The degree of temperature change in cold pool caused by thunderstorm may decide the intensity of a short-time rainfall, and local topography plays an important role in extreme precipitation. Local water vapour accumulation and water vapour flux convergence in the middle and lower layers support adequate moisture condition in the process. Moving direction and development direction of mesocale convective cloud are in a line to develop the train effect, leading to local short-time heavy rain in Yulin city, Shaanxi, China.