Garden pea productivity and qualities are hampered in zinc(Zn),boron(B),and molybdenum(Mo)deficient soil.Thus,the combination of micronutrients(i.e.,Zn,B,and Mo)and rhizobium is necessary to increase the productivity ...Garden pea productivity and qualities are hampered in zinc(Zn),boron(B),and molybdenum(Mo)deficient soil.Thus,the combination of micronutrients(i.e.,Zn,B,and Mo)and rhizobium is necessary to increase the productivity and quality of garden peas,since this management for garden peas is neglected in Bangladesh.Therefore,the present study was made to assess the effectiveness of rhizobium inoculant singly or in combination with the micronutrients(i.e.,Zn,B,and Mo)on growth,yield,nutrient uptake,and quality of garden peas.Treatments were:T_(1)=Control,T_(2)=Rhizobium inoculation at 50 g/kg seed,T_(3)=T_(2)+Zn_(3)Mo1,T_(4)=T_(2)+B_(2)Mo1,T_(5)=T_(2)+Zn_(3)B_(2),T_(6)=T_(2)+Zn_(3)B_(2)Mo1 and T_(7)=Zn_(3)B_(2)Mo1.All treatments were arranged in a randomized complete block design and repeated all treatments in three times.The application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)with inoculation of Rhizobium at 50 g kg^(−1)seed(T_(6))facilitated to increase of 44.8%in the green pod and 29.7%seed yield over control.The same treatment contributed to attaining the maximum nodulation(25.3 plant^(−1)),Vitamin C(43.5 mg 100 g^(−1)),protein content(22.2%),and nutrient uptake as well as accumulation in garden peas.Among all treatment combinations,treatment T_(6)was found superior to others based on microbial activities,soil fertility,and profitability.The results of the study found that the application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)in combination with Rhizobium inoculation(50 g kg^(−1)seed)can improve the yield and quality of garden peas.The results of the study have the potential for the areas,where there is no use of Rhizobium inoculant or Zn,B,and Mo fertilizer for cultivation of garden pea.展开更多
A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidat...A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidation determined the planar structure of 1.Subsequent electronic circular dichroism(ECD)experiment assigned the absolute configuration of 1.Compounds 1,2,4–6,and 10 displayed different degrees of neuroprotective activities on human neuroblastoma cells SH-SY5Y.Five compounds(1,3–5,and 13)emerged resistance to protein tyrosine phosphatase 1B(PTP1B),further kinetic analysis and molecular docking study indicated that the most potent compound 13(IC50value of 10.74±0.61μmol/L)was found as a noncompetitive inhibitor for PTP1B.Surface plasmon resonance(SPR)and molecular docking studies also demonstrated the interaction between compound 12 and Niemann-Pick C1 Like 1(NPC1L1),which has been identified as significant therapeutic target for hypercholesteremia.In addition,compounds 3,6,and 14 showed attractive inhibitory activity against the phytopathogenic fungi:Colletotrichum capsici.Therefore,library of Cladosporium metabolites is enriched and new active uses of known compounds are explored.展开更多
Objective:This study aimed to evaluate the anti-inflammatory effects of petal and stamen extracts of saffron crocus(Crocus sativus)and explore the underlying mechanism.Methods:Local and systemic inflammation models we...Objective:This study aimed to evaluate the anti-inflammatory effects of petal and stamen extracts of saffron crocus(Crocus sativus)and explore the underlying mechanism.Methods:Local and systemic inflammation models were used to investigate the anti-inflammatory effects of C.sativus.A xyleneinduced inflammation model or lipopolysaccharide(LPS)-induced inflammation model was used in this study.C.sativus petal and stamen extracts were each administered to the mice in the xylene and LPS models by gavage for 14 d at 0.1 and 0.4 g/kg doses,respectively.Enzyme-linked immunosorbent assay(ELISA)was used to measure the concentrations of tumor necrosis factor(TNF)-αand interleukin(IL)-1βin mouse serum.Hematoxylin and eosin(H&E)staining was used to observe the pathological changes in the ear in the xylene-induced inflammation model and in the spleen in the LPS-induced inflammation model.NOD-like receptor thermal protein domain associated protein 3(NLRP3)protein levels within the nuclear factor-kappa B(NF-κB)pathway were assessed using western blotting.RAW264.7 cells were treated with LPS(5μg/mL)and LPS+C.sativus(0.05,0.1,and 0.2 mg/mL)for 24 h,and a Cell Counting Kit-8 was used to measure cell proliferation.Changes in NLRP3 and NF-κB levels were evaluated by western blotting.Results:Petal and stamen extracts of C.sativus attenuated the anti-inflammatory effects in local or systemic inflammatory models and repaired pathological changes in the ear in the xylene-induced inflammation model and spleen in the LPS-induced inflammation model.These extracts also decreased the concentrations of TNF-αand IL-1βin the mouse serum in the LPS-induced inflammation model.C.sativus downregulated NLRP3 protein level through the NF-κB pathway and downregulated LC-3 and BECLIN1 in vivo and in vitro.Carbonyl Cyanide3-ChloroPhenylhydrazone(CCCP)weakened the effects of C.sativus on the NLRP3–NF-κB pathway.Conclusion:C.sativus has anti-inflammatory effects and regulates the NLRP3-NF-κB pathway.展开更多
文摘Garden pea productivity and qualities are hampered in zinc(Zn),boron(B),and molybdenum(Mo)deficient soil.Thus,the combination of micronutrients(i.e.,Zn,B,and Mo)and rhizobium is necessary to increase the productivity and quality of garden peas,since this management for garden peas is neglected in Bangladesh.Therefore,the present study was made to assess the effectiveness of rhizobium inoculant singly or in combination with the micronutrients(i.e.,Zn,B,and Mo)on growth,yield,nutrient uptake,and quality of garden peas.Treatments were:T_(1)=Control,T_(2)=Rhizobium inoculation at 50 g/kg seed,T_(3)=T_(2)+Zn_(3)Mo1,T_(4)=T_(2)+B_(2)Mo1,T_(5)=T_(2)+Zn_(3)B_(2),T_(6)=T_(2)+Zn_(3)B_(2)Mo1 and T_(7)=Zn_(3)B_(2)Mo1.All treatments were arranged in a randomized complete block design and repeated all treatments in three times.The application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)with inoculation of Rhizobium at 50 g kg^(−1)seed(T_(6))facilitated to increase of 44.8%in the green pod and 29.7%seed yield over control.The same treatment contributed to attaining the maximum nodulation(25.3 plant^(−1)),Vitamin C(43.5 mg 100 g^(−1)),protein content(22.2%),and nutrient uptake as well as accumulation in garden peas.Among all treatment combinations,treatment T_(6)was found superior to others based on microbial activities,soil fertility,and profitability.The results of the study found that the application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)in combination with Rhizobium inoculation(50 g kg^(−1)seed)can improve the yield and quality of garden peas.The results of the study have the potential for the areas,where there is no use of Rhizobium inoculant or Zn,B,and Mo fertilizer for cultivation of garden pea.
基金Supported by the China Agriculture Research System of MOF and MARA(CARS-21)the Financial Fund of the Ministry of Agriculture and Rural Affairs,China(No.NFZX2021)the National Natural Science Foundation of China(No.81973568)。
文摘A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidation determined the planar structure of 1.Subsequent electronic circular dichroism(ECD)experiment assigned the absolute configuration of 1.Compounds 1,2,4–6,and 10 displayed different degrees of neuroprotective activities on human neuroblastoma cells SH-SY5Y.Five compounds(1,3–5,and 13)emerged resistance to protein tyrosine phosphatase 1B(PTP1B),further kinetic analysis and molecular docking study indicated that the most potent compound 13(IC50value of 10.74±0.61μmol/L)was found as a noncompetitive inhibitor for PTP1B.Surface plasmon resonance(SPR)and molecular docking studies also demonstrated the interaction between compound 12 and Niemann-Pick C1 Like 1(NPC1L1),which has been identified as significant therapeutic target for hypercholesteremia.In addition,compounds 3,6,and 14 showed attractive inhibitory activity against the phytopathogenic fungi:Colletotrichum capsici.Therefore,library of Cladosporium metabolites is enriched and new active uses of known compounds are explored.
基金supported by the National Natural Science Foundation of China(81873063)High-level talents Research project of Hefei Normal University(2020rcjj30)+2 种基金Key Project of Provincial Scientific Research Platform of Hefei Normal University in 2020(2020PTZD14)Key Project of Universities Natural Science Foundation of Anhui province(KJ2021A0935,KJ2021A0932)Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202009).
文摘Objective:This study aimed to evaluate the anti-inflammatory effects of petal and stamen extracts of saffron crocus(Crocus sativus)and explore the underlying mechanism.Methods:Local and systemic inflammation models were used to investigate the anti-inflammatory effects of C.sativus.A xyleneinduced inflammation model or lipopolysaccharide(LPS)-induced inflammation model was used in this study.C.sativus petal and stamen extracts were each administered to the mice in the xylene and LPS models by gavage for 14 d at 0.1 and 0.4 g/kg doses,respectively.Enzyme-linked immunosorbent assay(ELISA)was used to measure the concentrations of tumor necrosis factor(TNF)-αand interleukin(IL)-1βin mouse serum.Hematoxylin and eosin(H&E)staining was used to observe the pathological changes in the ear in the xylene-induced inflammation model and in the spleen in the LPS-induced inflammation model.NOD-like receptor thermal protein domain associated protein 3(NLRP3)protein levels within the nuclear factor-kappa B(NF-κB)pathway were assessed using western blotting.RAW264.7 cells were treated with LPS(5μg/mL)and LPS+C.sativus(0.05,0.1,and 0.2 mg/mL)for 24 h,and a Cell Counting Kit-8 was used to measure cell proliferation.Changes in NLRP3 and NF-κB levels were evaluated by western blotting.Results:Petal and stamen extracts of C.sativus attenuated the anti-inflammatory effects in local or systemic inflammatory models and repaired pathological changes in the ear in the xylene-induced inflammation model and spleen in the LPS-induced inflammation model.These extracts also decreased the concentrations of TNF-αand IL-1βin the mouse serum in the LPS-induced inflammation model.C.sativus downregulated NLRP3 protein level through the NF-κB pathway and downregulated LC-3 and BECLIN1 in vivo and in vitro.Carbonyl Cyanide3-ChloroPhenylhydrazone(CCCP)weakened the effects of C.sativus on the NLRP3–NF-κB pathway.Conclusion:C.sativus has anti-inflammatory effects and regulates the NLRP3-NF-κB pathway.