期刊文献+
共找到18,394篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
1
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
Optimized Design of Bio-Inspired Wind Turbine Blades
2
作者 Yuanjun Dai Dong Wang +1 位作者 Xiongfei Liu Weimin Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1647-1664,共18页
To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti... To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance. 展开更多
关键词 AIRFOIL wind turbines blade design CFD
下载PDF
Research on Automatic Test System of Engine Blade Natural Frequency
3
作者 LU Yonghua LIU Jingjing +2 位作者 YANG Haibo HUANG Chuan MA Zhicheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期476-487,共12页
Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ... Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision. 展开更多
关键词 blade vibration failure natural frequency automatic test system
下载PDF
Research on the Icing Diagnosis ofWind Turbine Blades Based on FS–XGBoost–EWMA
4
作者 Jicai Guo Xiaowen Song +5 位作者 Chang Liu Yanfeng Zhang Shijie Guo JianxinWu Chang Cai Qing’an Li 《Energy Engineering》 EI 2024年第7期1739-1758,共20页
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re... In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines. 展开更多
关键词 Wind turbine blade icing feature selection XGBoost EWMA
下载PDF
Numerical simulation on directional solidification and heat treatment processes of turbine blades
5
作者 Ye-yuan Hu Ju-huai Ma Qing-yan Xu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期476-490,共15页
Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing ... Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed. 展开更多
关键词 single crystal blades Ni-based superalloy directional solidification heat treatment numerical simulation
下载PDF
Blade Wrap Angle Impact on Centrifugal Pump Performance:Entropy Generation and Fluid-Structure Interaction Analysis
6
作者 Hayder Kareem Sakran Mohd Sharizal Abdul Aziz Chu Yee Khor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期109-137,共29页
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal... The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles. 展开更多
关键词 Centrifugal pump blade wrap angle entropy generation theory fluid-structure interaction hydraulic performance
下载PDF
Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network
7
作者 Jianyong Ao Yanping Li +2 位作者 Shengqing Hu Songyu Gao Qi Yao 《Energy Engineering》 EI 2024年第12期3825-3841,共17页
Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solv... Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load. 展开更多
关键词 Wind turbine blade fatigue load modeling deep neural network
下载PDF
Influence of Blade Number on the Performance of Hydraulic Turbines in the Transition Stage
8
作者 Fengxia Shi Guangbiao Zhao +1 位作者 Yucai Tang Dedong Maand Xiangyun Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2617-2636,共20页
To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The ins... To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software.The ensuing results are compared with the outcomes of experimental tests.It is shown that thefluctuation range of the pressure coefficient increases with time,but the corresponding range for the transient hydraulic efficiency decreases gradually when theflow velocity transits to larger values.During the transition to smallflow velocity,thefluctuation range of the pressure coefficient gradually decreases as time passes,but the correspondingfluctuation range of its transient hydraulic efficiency gradually becomes larger.Thefluctuation range in the Z9 case is small during the transition.The main frequency of transient hydraulic efficiency pulsation is equal to the blade frequency.At the main frequency,Z7 has the largest amplitude of the hydraulic efficiency pulsation,Z10 has the smallest amplitude,and the difference between Z7 and Z9 is limited.As the number of blades grows,the pressure pulsation during the transition process gradually decreases,but the pressure pulsation of Z10 at the volute tongue is larger.In the steady state,Z9 has the highest efficiency and in the transient stage,the pressure coefficientfluctuation range is small.Accordingly,for the hydraulic turbine Z9,the performance is optimal. 展开更多
关键词 Hydraulic turbine blade number transient process pressurefluctuation transient hydraulic performance
下载PDF
Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade
9
作者 Zhan Wang Liang Li +3 位作者 Long Wang Weidong Zhu Yinghui Li Echuan Yang 《Energy Engineering》 EI 2024年第10期2981-3000,共20页
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl... Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little. 展开更多
关键词 Pitch motion wind turbine blade inherent rigid-flexible coupling vibration characteristics
下载PDF
PFNA2 versus 95 Degree Condylar Blade Plate in the Management of Unstable Trochanteric Fractures
10
作者 Piyush Gadegone Wasudeo Gadegone +1 位作者 Vijayanand Lokhande Virender Kadian 《Open Journal of Orthopedics》 2024年第2期93-104,共12页
Purpose: The proximal femoral nail anti-rotation (PFNA) is known to have advantages in enhancing the anchorage ability of internal fixation in elderly unstable osteoporotic intertrochanteric fracture patients. However... Purpose: The proximal femoral nail anti-rotation (PFNA) is known to have advantages in enhancing the anchorage ability of internal fixation in elderly unstable osteoporotic intertrochanteric fracture patients. However whether it is superior to condylar blade fixation is not clear. This study aimed to determine which treatment has better clinical outcomes in older patients. Materials and Methods: A total of 86 patients over the age of 60 with unstable trochanteric fractures within the past 3 weeks, were included in this prospective study conducted from June 1, 2018, to May 31, 2021. All the intertrochanteric fractures were classified according to AO/OTA classification. Among them, 44 cases were treated with the Proximal Femoral Nail (PFNA2) with or without an augmentation screw, and 42 cases were treated with the Condylar Blade Plate. In addition, the operative time, intraoperative blood loss, intraoperative and postoperative blood transfusion, postoperative weight-bearing time, hospitalization time, Harris score of hip function, Kyle’s criteria and postoperative complications were compared between the two groups. Results: The mean duration of surgery for the PFN group was 66.8 minutes (on average), whereas for the condylar blade plate group, it was 99.30 minutes (on average). The PFNA2 group experienced less blood loss (average of 80 mL) compared to the condylar blade plate group (average of 120 mL). Union and partial weight-bearing occurred earlier in the PFNA2 group (14.1 weeks and 10.6 weeks, respectively) compared to the Condylar blade plate group (18.7 weeks and 15.8 weeks). In two patients from the PFNA2 group, screw backing out and varus collapse complications were encountered;however, these patients remained asymptomatic and did not require revision surgery. In two other patients, screw cut out and breakage of the nail at the helical screw hole leading to non-union of the proximal femur were observed during the nine-month follow-up, necessitating revision surgery with prosthetic replacement. Among the condylar blade plate group, three patients experienced complications, including blade breakage at the blade and plate junction. In two cases, the fracture united in varus, and in one case, the blade cut through, resulting in non-union of the femoral head, which required revision surgery. According to the Harris hip score and Kyle’s criteria, a good-excellent outcome was observed in 92.85% of cases in the PFNA2 group and 90.90% of cases in the condylar blade plate group. Conclusion: Both the Proximal Femoral Nail A2 and Condylar blade plate are effective implants for the treatment of unstable trochanteric fractures. The intramedullary implant promotes biological healing and allows for early ambulation with minimal complications. Similarly satisfactory restoration of anatomy and favorable radiological and functional results can be achieved with the biological fixation provided by the 95-degree condylar blade plate. However, the use of PFNA2 internal fixation technique has the advantage of less trauma in elderly patients than the 95-degree condylar blade plate. 展开更多
关键词 Proximal Femoral Nail Anti-Rotation Condylar blade Plate Internal Fixation Unstable Intertrochanteric Fracture OSTEOPOROTIC
下载PDF
Nonlinear Flap-Wise Vibration Characteristics ofWind Turbine Blades Based onMulti-Scale AnalysisMethod
11
作者 Qifa Lang Yuqiao Zheng +2 位作者 Tiancai Cui Chenglong Shi Heyu Zhang 《Energy Engineering》 EI 2024年第2期483-498,共16页
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR... This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams. 展开更多
关键词 Wind turbine blades nonlinear vibration Galerkin method multi-scales method
下载PDF
Assessment of Similitude Behavior in Natural Frequencies of Printed Turbine Blade
12
作者 MUHAMMAD Usman Safdar SHEN Xing EIMAN B.Saheby 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期488-501,共14页
Improving structures involves comparing old and new designs on a key parameter.Calculating the percent change in performance is a method to assess.This paper proposes a cost-effective analogy by generating replicas of... Improving structures involves comparing old and new designs on a key parameter.Calculating the percent change in performance is a method to assess.This paper proposes a cost-effective analogy by generating replicas of additive manufactured aluminum alloy(Al Si10Mg)body-centered cubic lattice(BCC)based turbine blade(T106C)with the same in poly-lactic acid(PLA)material and their comparison in the context of percent change for natural frequencies.Initially,a cavity is created inside the turbine blade(hollow blade).Natural frequencies are obtained experimentally and numerically by incorporating BCC at 50%and 80%of the cavity length into the hollow blade for both materials.The cost of manufacturing the metal blades is 90%more than that of the PLA blades.The two material blade designs show a similar percentage variation,as the first-order mode enhancs more than 5%and the second-order mode more than 4%.To observe the behavior in another material,both blades are analyzed numerically with a nickel-based U-500 material,and the same result is achieved,describing that percent change between designs can be verified using the PLA material. 展开更多
关键词 AlSi10Mg poly-lactic acid(PLA) U-500 T106C blade BCC lattice structure
下载PDF
Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+Deep Learning Model
13
作者 Wanrun Li Wenhai Zhao +1 位作者 Tongtong Wang Yongfeng Du 《Structural Durability & Health Monitoring》 EI 2024年第5期553-575,共23页
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ... The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades. 展开更多
关键词 Structural health monitoring computer vision blade surface defects detection Deeplabv3+ deep learning model
下载PDF
Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade
14
作者 Haixia Kou Bowen Yang +2 位作者 Xuyao Zhang Xiaobo Yang Haibo Zhao 《Structural Durability & Health Monitoring》 EI 2024年第3期277-297,共21页
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio... Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade. 展开更多
关键词 Composite laminate wind turbine blade sub-structure progressive damage analysis user material subroutine cohesive zone model
下载PDF
Wind Turbine Noise Reduction through Blade Retrofitting
15
作者 Sarah Seevers Robin Ward +4 位作者 Scotty Hutto Darryl House Nick Zelenka Manuel Perea Daniel Fonseca 《Open Journal of Modelling and Simulation》 2024年第3期75-88,共14页
This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two c... This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations. 展开更多
关键词 Wind Turbine Noise blade Retrofitting Aerodynamic Noise Electricity Generation
下载PDF
Flashover Probability of Wind Turbine Blade and Impact of Strong Electromagnetic Pulse from Lightning Strikes on Wind Turbine Safety
16
作者 Lixin YAO Bin XIAO +5 位作者 Jianwen ZHANG Weixiang FENG Renhong GUO Zengru YANG Chunliang ZHANG Hui YANG 《Meteorological and Environmental Research》 2024年第1期62-66,共5页
This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.... This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians. 展开更多
关键词 Wind turbine Flashover probability of blade lightning arrester Spatial gradient of electromagnetic field intensity Technical route
下载PDF
基于BLADED软件的大型风力机叶片气动分析 被引量:17
17
作者 周鹏展 曾竟成 +1 位作者 肖加余 杨军 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期2022-2027,共6页
基于BLADED软件,根据德国GL2003国际标准,对应用于GL3A风场的某款1.50 MW大型风力机叶片的气动额定功率、风能利用系数、疲劳载荷、极限载荷等进行分析。研究结果表明:在与某款1.65 MW风力发电机组匹配时,该叶片在风速为11.0 m/s时的额... 基于BLADED软件,根据德国GL2003国际标准,对应用于GL3A风场的某款1.50 MW大型风力机叶片的气动额定功率、风能利用系数、疲劳载荷、极限载荷等进行分析。研究结果表明:在与某款1.65 MW风力发电机组匹配时,该叶片在风速为11.0 m/s时的额定功率能达到1.65 MW;在叶尖速比为7.8~11.4时,其风能利用系数均在0.460以上,在叶尖速比为9.5时,其最大风能利用系数可达0.486,表明该叶片具有较好的气动性能和较宽的风速适应范围;其叶根等效疲劳载荷为2.107 7 MN.m,叶根极限挥舞载荷为4.614 6 MN.m,均比该叶片载荷的原设计值小,说明其应用是安全的。 展开更多
关键词 大型风力机叶片 气动分析 动量-叶素理论 bladeD软件
下载PDF
Foreign Object Damage to Fan Rotor Blades of Aeroengine Part II: Numerical Simulation of Bird Impact 被引量:8
18
作者 关玉璞 赵振华 +1 位作者 陈伟 高德平 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期328-334,共7页
Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistanc... Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results. 展开更多
关键词 aerospace propulsion system bird impact numerical simulation fan rotor blade transient response
下载PDF
Blade技术和常规技术在眼眶磁共振扫描中对图像有效率改善的对比分析 被引量:2
19
作者 董玉茹 王宏 +4 位作者 钟心 马毅 董悦 杨斯娇 刘勉 《医疗卫生装备》 CAS 2014年第11期71-74,共4页
目的:通过常规技术和Blade技术在眼眶疾病检查中图像改善程度的对比分析,探讨Blade技术对伪影发生、影像质量的改善情况和眼眶分区、伪影程度对Blade技术图像校正的影响规律。方法:选择136例患者为对比分析对象。采用德国西门子公司Trio... 目的:通过常规技术和Blade技术在眼眶疾病检查中图像改善程度的对比分析,探讨Blade技术对伪影发生、影像质量的改善情况和眼眶分区、伪影程度对Blade技术图像校正的影响规律。方法:选择136例患者为对比分析对象。采用德国西门子公司Trio Tim 3.0T超导磁共振成像系统,以不同参数,在相同位置(眼球区、视神经鞘区、肌锥内区、肌锥外区和骨膜外区)对所有患者先后进行常规磁共振扫描和Blade技术扫描,并以常规磁共振扫描图像的图像质量分级,获取不同组2种扫描图像和Blade技术图像改善有效率。采用Excel进行数据录入,计数资料采用百分率及构成比表示;计量资料采用配对t检验或配对秩和检验。结果:136例患者中,轻度、中度和重度伪影组年龄和性别均无统计学差异(P>0.05)。在眼球区(χ2=22.805,P<0.05)和视神经鞘区(χ2=14.378,P<0.05)内,Blade技术的图像改善有效率均是重度伪影组高于轻度、中度伪影组;轻度伪影组Blade技术的图像改善有效率骨膜外区最高(80.0%),眼球区最低(33.3%)(χ2=28.422,P<0.05);重度伪影组Blade技术的图像改善有效率视神经鞘区最高(82.4%),肌锥外区最低(45.1%)(χ2=26.132,P<0.05)。结论:Blade技术相对于常规技术,对扫描图像有效率的改善可能受眼眶分区及伪影程度的影响。 展开更多
关键词 眼眶 磁共振扫描 blade技术 应用研究
下载PDF
基于Bladed风电机组变速与变桨距控制器参数优化 被引量:6
20
作者 高峰 王伟 凌新梅 《系统仿真学报》 CAS CSCD 北大核心 2016年第7期1644-1650,1660,共8页
由于风力发电系统具有非线性和参数时变等特点,其控制器参数在设计和优化时不易计算与整定。利用Bladed软件中模型线性化结合模型降阶算法建立了适用于参数整定的机组线性化模型,应用免疫记忆粒子群算法整定控制器PI(Proportion Integr... 由于风力发电系统具有非线性和参数时变等特点,其控制器参数在设计和优化时不易计算与整定。利用Bladed软件中模型线性化结合模型降阶算法建立了适用于参数整定的机组线性化模型,应用免疫记忆粒子群算法整定控制器PI(Proportion Integral)参数,并基于Bladed参数辨识结果计算了最优转速-转矩控制的增益系数和自适应PI变桨距控制的增益因子,形成了一种基于Bladed的风电机组变速与变桨距控制器参数优化方法。仿真结果表明了该优化方法的正确性和有效性。 展开更多
关键词 风电机组 bladed 控制器 优化 免疫记忆粒子群算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部