A multi-scale damage model of concrete is proposed based on the concept of energy equivalent strain for generic two-or three-dimensional applications.Continuum damage mechanics serves as the framework to describe the ...A multi-scale damage model of concrete is proposed based on the concept of energy equivalent strain for generic two-or three-dimensional applications.Continuum damage mechanics serves as the framework to describe the basic damage variables,namely the tensile and compressive damage.The homogenized Helmholtz free energy is introduced as the bridge to link the micro-cell and macroscopic material.The crack propagation in micro-cells is modeled,and the Helmholtz free energy in the cracked micro-structure is calculated and employed to extract the damage evolution functions in the macroscopic material.Based on the damage energy release rates and damage consistent condition,the energy equivalent strain is used to expand the uniaxial damage model to the multi-dimensional damage model.Agreements with existing experimental data that include uniaxial tensile and compressive tests,biaxial compression and biaxial peak stress envelop demonstrate the capacity of the multi-scale damage model in reproducing the typical nonlinear performances of concrete specimens.The simulation of precast laminated concrete slab further demonstrates its application to concrete structures.展开更多
Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed...Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed, one condition is the equivalence of strain energy, and the other is the deformation similarity. Based on these two homogenization conditions, an eigenelement method is presented, which is characteristic of structure-preserving property. It follows from the frequency comparisons that the eigenelement method is more accurate than the stiffness average method and the compliance average method.展开更多
基金National Science Foundation of China under Grant No.51808499Science Foundation of Zhejiang Province of China under the Grant No.LQ18E080009 and2018C03033-2 is gratefully acknowledged.
文摘A multi-scale damage model of concrete is proposed based on the concept of energy equivalent strain for generic two-or three-dimensional applications.Continuum damage mechanics serves as the framework to describe the basic damage variables,namely the tensile and compressive damage.The homogenized Helmholtz free energy is introduced as the bridge to link the micro-cell and macroscopic material.The crack propagation in micro-cells is modeled,and the Helmholtz free energy in the cracked micro-structure is calculated and employed to extract the damage evolution functions in the macroscopic material.Based on the damage energy release rates and damage consistent condition,the energy equivalent strain is used to expand the uniaxial damage model to the multi-dimensional damage model.Agreements with existing experimental data that include uniaxial tensile and compressive tests,biaxial compression and biaxial peak stress envelop demonstrate the capacity of the multi-scale damage model in reproducing the typical nonlinear performances of concrete specimens.The simulation of precast laminated concrete slab further demonstrates its application to concrete structures.
文摘Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed, one condition is the equivalence of strain energy, and the other is the deformation similarity. Based on these two homogenization conditions, an eigenelement method is presented, which is characteristic of structure-preserving property. It follows from the frequency comparisons that the eigenelement method is more accurate than the stiffness average method and the compliance average method.