期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical modeling on strain energy evolution in rock system interaction with energy-absorbing prop and rock bolt 被引量:4
1
作者 Yang Hao Chunhui Liu +4 位作者 Yu Wu Hai Pu Yanlong Chen Lingling Shen Guichen Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1273-1288,共16页
The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to hig... The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions. 展开更多
关键词 strain energy Coal and rock mass Energy-absorbing prop and rock bolt strain energy evolution
下载PDF
An approach to evaluate ground surface rupture caused by reverse fault movement 被引量:6
2
作者 赵纪生 陶夏新 +1 位作者 师黎静 王海云 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期29-39,共11页
An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopt... An approach for estimating ground surface rupture caused by strong earthquakes is presented in this paper, where the finite element (FE) method of continuous and discontinuous coalescent displacement fields is adopted. The onset condition of strain localization is introduced to detect the formation of the slippage line. In the analysis, the Drucker-Prager constitutive model is used for soils and the rate- and state-dependent friction law is used on the slippage line to simulate the evolution of the sliding. A simple application to evaluate the ground surface rupture induced by a reverse fault movement is provided, and the numerical simulation shows good agreement with failure characteristics observed in the field after strong earthquakes. 展开更多
关键词 surface rupture reverse fault localized band slippage line onset and evolution strain localization friction law
下载PDF
Synthetic auxotrophs accelerate cell factory development through growth-coupled models
3
作者 Liangpo Li Linwei Yu +3 位作者 Xinxiao Sun Qipeng Yuan Xiaolin Shen Jia Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第9期73-87,共15页
The engineering of microbial cell factories for the production of high-value chemicals from renewable resources presents several challenges,including the optimization of key enzymes,pathway fluxes and metabolic networ... The engineering of microbial cell factories for the production of high-value chemicals from renewable resources presents several challenges,including the optimization of key enzymes,pathway fluxes and metabolic networks.Addressing these challenges involves the development of synthetic auxotrophs,a strategy that links cell growth with enzyme properties or biosynthetic pathways.This linkage allows for the improvement of enzyme properties by in vivo directed enzyme evolution,the enhancement of metabolic pathway fluxes under growth pressure,and remodeling of metabolic networks through directed strain evolution.The advantage of employing synthetic auxotrophs lies in the power of growth-coupled selection,which is not only high-throughput but also labor-saving,greatly simplifying the development of both strains and enzymes.Synthetic auxotrophs play a pivotal role in advancing microbial cell factories,offering benefits from enzyme optimization to the manipulation of metabolic networks within single microbes.Furthermore,this strategy extends to coculture systems,enabling collaboration within microbial communities.This review highlights the recently developed applications of synthetic auxotrophs as microbial cell factories,and discusses future perspectives,aiming to provide a practical guide for growth-coupled models to produce value-added chemicals as part of a sustainable biorefinery. 展开更多
关键词 synthetic auxotrophs growth-coupled directed enzyme evolution pathway flux directed strain evolution COCULTURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部