Herein,a high strain of ~0.3% with a small hysteresis of 43% is achieved at a low electric field of 4 kV/mm in the highly <001>-textured 0.97(0.76Bi_(0.5)Na_(0.5)TiO_(3)-0.24SrTiO_(3))-0.03NaNbO_(3)(BNT-ST-0.03N...Herein,a high strain of ~0.3% with a small hysteresis of 43% is achieved at a low electric field of 4 kV/mm in the highly <001>-textured 0.97(0.76Bi_(0.5)Na_(0.5)TiO_(3)-0.24SrTiO_(3))-0.03NaNbO_(3)(BNT-ST-0.03NN)ceramics with an ergodic relaxor(ER)state,leading to a large normalized strain(d_(33)^(*))of 720 pm/V.The introduction of NN templates into BNT-ST induces the grain orientation growth and enhances the ergodicity.The highly <001>-textured BNT-ST-0.03NN ceramics display a pure ergodic relaxor state with coexisted ferroelectric R3c and antiferroelectric P4bm polar nanoregions(PNRs)on nanoscale.Moreover,due to the incomplete interdiffusion between the NN template and BNT-ST matrix,the textured ceramics present a core-shell structure with the antiferroelectric NN core,and thus the BNT-based matrix owns more R3c PNRs relative to the homogeneous nontextured samples.The high <001> crystallographic texture and more R3c PNRs both facilitate the relaxor-to-ferroelectric transition,leading to the low-field-driven high strain,while the ergodic relaxor state ensures a small hysteresis.Furthermore,the d_(33)^(*)value remains high up to 518 pm/V at 100℃ with an ultra-low hysteresis of 6%.展开更多
基金the National Key R&D Program of China(Grant No.2020YFA0711700)the National Natural Science Foundation of China(Grant No.U19A2087)+1 种基金the Special Funding Support for the Construction of Innovative Provinces in Hunan Province of China(Grant No.2020GK2062)the China National Postdoctoral Program for Innovative Talents(Grant No.BX2021377).
文摘Herein,a high strain of ~0.3% with a small hysteresis of 43% is achieved at a low electric field of 4 kV/mm in the highly <001>-textured 0.97(0.76Bi_(0.5)Na_(0.5)TiO_(3)-0.24SrTiO_(3))-0.03NaNbO_(3)(BNT-ST-0.03NN)ceramics with an ergodic relaxor(ER)state,leading to a large normalized strain(d_(33)^(*))of 720 pm/V.The introduction of NN templates into BNT-ST induces the grain orientation growth and enhances the ergodicity.The highly <001>-textured BNT-ST-0.03NN ceramics display a pure ergodic relaxor state with coexisted ferroelectric R3c and antiferroelectric P4bm polar nanoregions(PNRs)on nanoscale.Moreover,due to the incomplete interdiffusion between the NN template and BNT-ST matrix,the textured ceramics present a core-shell structure with the antiferroelectric NN core,and thus the BNT-based matrix owns more R3c PNRs relative to the homogeneous nontextured samples.The high <001> crystallographic texture and more R3c PNRs both facilitate the relaxor-to-ferroelectric transition,leading to the low-field-driven high strain,while the ergodic relaxor state ensures a small hysteresis.Furthermore,the d_(33)^(*)value remains high up to 518 pm/V at 100℃ with an ultra-low hysteresis of 6%.