In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pres...In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.展开更多
The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ic...The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ice material model is critical.However,ice is not a common structural material and exhibits an extremely complex material behavior.The material models of ice reported so far are not able to accurately simulate the ice behavior at high strain rates.This study proposes a novel high-precision macro-phenomenological elastic fracture model based on the brittle behavior of ice at high strain rates.The developed model has been compared with five reported models by using the smoothed particle hydrodynamics method so as to simulate the ice-impact process with respect to the impact speeds and ice shapes.The important metrics and phenomena(impact force history,deformation and fragmentation of the ice projectile and deflection of the target)were compared with the experimental data reported in the literature.The findings obtained from the developed model are observed to be most consistent with the experimental data,which demonstrates that the model represents the basic physics and phenomena governing the ice impact at high strain rates.The developed model includes a relatively fewer number of material parameters.Further,the used parameters have a clear physical meaning and can be directly obtained through experiments.Moreover,no adjustment of any material parameter is needed,and the consumption duration is also acceptable.These advantages indicate that the developed model is suitable for simulating the iceimpact process and can be applied for the anti-ice impact design in aviation.展开更多
作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladde...作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladden柱体动力屈曲失稳模型,提出了一种预测岩石平均破碎块度的方法,并探究了应变率对动态强度和平均破碎块度的影响。研究结果表明,随着应变率的增加,动态强度增加,平均破碎块度减小,且应变率依赖性逐渐降低。模型平均破碎块度预测与实验数据吻合良好。展开更多
为了研究在动载荷下岩石破裂的声发射特性,采用霍普金森(SHPB)实验系统对三种岩石进行不同应变率下的冲击载荷破坏实验,同步采集破坏过程的声发射参数,从应力—应变、幅值分布、振铃计数变化以及峰值频率分布等方面进行了分析与研究。...为了研究在动载荷下岩石破裂的声发射特性,采用霍普金森(SHPB)实验系统对三种岩石进行不同应变率下的冲击载荷破坏实验,同步采集破坏过程的声发射参数,从应力—应变、幅值分布、振铃计数变化以及峰值频率分布等方面进行了分析与研究。实验结果表明:力学特性方面,随着应变率增大,三种岩石的动态强度随之增大,极限应变也随之增大,且岩石试样的破碎程度随之增大,表现为碎块的尺寸减小、块数增加、碎屑增多。在声发射特性方面,三种岩石的峰值频率主要在550 k Hz以下,且随着应变率的增加,三种岩石的振铃计数都随之增大,低幅值信号比例增加,峰值频率在100 k Hz以下的低频信号随之减少,100~200k Hz以及400~550 k Hz的中高频信号随之增多,说明峰值频率有向中高频移动的趋势。展开更多
基金National Natural Science Foundation of China under Grant No.51378497
文摘In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.
基金supported by the National Science and Technology Major Project,China(No.J2019-I-0013-0013)。
文摘The ice impact can cause a severe damage to an aircraft’s exposed structure,thus,requiring its prevention.The numerical simulation represents an effective method to overcome this challenge.The establishment of the ice material model is critical.However,ice is not a common structural material and exhibits an extremely complex material behavior.The material models of ice reported so far are not able to accurately simulate the ice behavior at high strain rates.This study proposes a novel high-precision macro-phenomenological elastic fracture model based on the brittle behavior of ice at high strain rates.The developed model has been compared with five reported models by using the smoothed particle hydrodynamics method so as to simulate the ice-impact process with respect to the impact speeds and ice shapes.The important metrics and phenomena(impact force history,deformation and fragmentation of the ice projectile and deflection of the target)were compared with the experimental data reported in the literature.The findings obtained from the developed model are observed to be most consistent with the experimental data,which demonstrates that the model represents the basic physics and phenomena governing the ice impact at high strain rates.The developed model includes a relatively fewer number of material parameters.Further,the used parameters have a clear physical meaning and can be directly obtained through experiments.Moreover,no adjustment of any material parameter is needed,and the consumption duration is also acceptable.These advantages indicate that the developed model is suitable for simulating the iceimpact process and can be applied for the anti-ice impact design in aviation.
文摘作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladden柱体动力屈曲失稳模型,提出了一种预测岩石平均破碎块度的方法,并探究了应变率对动态强度和平均破碎块度的影响。研究结果表明,随着应变率的增加,动态强度增加,平均破碎块度减小,且应变率依赖性逐渐降低。模型平均破碎块度预测与实验数据吻合良好。
文摘为了研究在动载荷下岩石破裂的声发射特性,采用霍普金森(SHPB)实验系统对三种岩石进行不同应变率下的冲击载荷破坏实验,同步采集破坏过程的声发射参数,从应力—应变、幅值分布、振铃计数变化以及峰值频率分布等方面进行了分析与研究。实验结果表明:力学特性方面,随着应变率增大,三种岩石的动态强度随之增大,极限应变也随之增大,且岩石试样的破碎程度随之增大,表现为碎块的尺寸减小、块数增加、碎屑增多。在声发射特性方面,三种岩石的峰值频率主要在550 k Hz以下,且随着应变率的增加,三种岩石的振铃计数都随之增大,低幅值信号比例增加,峰值频率在100 k Hz以下的低频信号随之减少,100~200k Hz以及400~550 k Hz的中高频信号随之增多,说明峰值频率有向中高频移动的趋势。