Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
Several days before the MsT. 0 Lushan earthquake, the YRY-4 borehole Strainmeter at Guza Station recorded prominent abnormal changes. The strain anomalies are very striking on the smooth background of several years' ...Several days before the MsT. 0 Lushan earthquake, the YRY-4 borehole Strainmeter at Guza Station recorded prominent abnormal changes. The strain anomalies are very striking on the smooth background of several years' recording after the Wenchuan earthquake. However, because construction in the town of Guza has been undergoing rapid development in recent years, many factors have interfered with observations at the station. Whether or not the observed strain changes before the Lushan earthquake were affected by any of the sources of interference becomes a question that must be answered. Among the likely sources of interference, apartment construction, sportsground reconstruction, and tunnel cutting can be excluded by analyzing the morphological characteristic of the anomalies. The two remaining most possible sources are road construction in front of the station and the water level change of the nearby Dadu River caused by water filling into and discharging from an upstream reservoir. Through field investigation, comparison of the correlation between the strain and the seismographic recordings, comparison of the correlation between the strain and the Dadu River flow recordings, and analysis of the strain anomaly characteristics, we conclude that the abnormal changes observed at Guza Station cannot be attributed to either of these two sources but should be related to the Lushan earthquake.展开更多
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
基金supported by the Special Fund for Earthquake Research in the Public Interest(201108009)
文摘Several days before the MsT. 0 Lushan earthquake, the YRY-4 borehole Strainmeter at Guza Station recorded prominent abnormal changes. The strain anomalies are very striking on the smooth background of several years' recording after the Wenchuan earthquake. However, because construction in the town of Guza has been undergoing rapid development in recent years, many factors have interfered with observations at the station. Whether or not the observed strain changes before the Lushan earthquake were affected by any of the sources of interference becomes a question that must be answered. Among the likely sources of interference, apartment construction, sportsground reconstruction, and tunnel cutting can be excluded by analyzing the morphological characteristic of the anomalies. The two remaining most possible sources are road construction in front of the station and the water level change of the nearby Dadu River caused by water filling into and discharging from an upstream reservoir. Through field investigation, comparison of the correlation between the strain and the seismographic recordings, comparison of the correlation between the strain and the Dadu River flow recordings, and analysis of the strain anomaly characteristics, we conclude that the abnormal changes observed at Guza Station cannot be attributed to either of these two sources but should be related to the Lushan earthquake.