The microstructural properties and electrochemical performance of zinc(Zn)sacrificial anodes during strain-induced melt activation(SIMA)were investigated in this study.The samples were subjected to a compressive ratio...The microstructural properties and electrochemical performance of zinc(Zn)sacrificial anodes during strain-induced melt activation(SIMA)were investigated in this study.The samples were subjected to a compressive ratio of 20%-50% at various temperatures(425-435℃)and durations(5-30 min).Short-term electrochemical tests(anode tests)based on DNV-RP-B401 and potentiodynamic polarization tests were performed in 3.5wt%NaCl solution to evaluate the electrochemical efficiency and corrosion behavior of the samples,respectively.The electrochemical test results for the optimum sample confirmed that the corrosion current density declined by 90% and the anode efficiency slightly decreased relative to that of the raw sample.Energy-dispersive X-ray spectroscopy,scanning electron microscopy,metallographic images,and microhardness profiles showed the accumulation of alloying elements on the boundary and the conversion of uniform corrosion into localized corrosion,hence the decrease of the Zn sacrificial anode’s efficiency after the SIMA process.展开更多
The effects of Al-8B grain refiner on microstructure and tensile properties of an Al-12Zn-3Mg-2.5Cu alloy produced by modified strain induced melt activation process were investigated. Pre-deformation of 60% was used ...The effects of Al-8B grain refiner on microstructure and tensile properties of an Al-12Zn-3Mg-2.5Cu alloy produced by modified strain induced melt activation process were investigated. Pre-deformation of 60% was used by hot working at 300 ℃. After pre-deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures(500, 550 and 590 ℃) for varying time(10, 20 and 40 min). It was observed that strain induced melt activation has caused the globular morphology of α(Al) grains. Microstructural study was carried out on the alloy by using optical microscope and scanning electron microscope in both unrefined and B-refined conditions. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 550 ℃ and 10 min, respectively. After the T6 heat treatment, the average tensile strengths increased from 278 to 585 MPa and 252 to 560 MPa for samples refined with 3.75% Al-8B before and after SIMA process, respectively. The ultimate strength of SIMA specimens is lower than that of B-refined specimens.展开更多
Tungsten coating is considered as a promising alternative material for plasma facing materials(PFC) in future fusion devices.The electro-deposition of tungsten in Na_2WO_4-ZnO-WO_3 melt at 1173 K on low activation ste...Tungsten coating is considered as a promising alternative material for plasma facing materials(PFC) in future fusion devices.The electro-deposition of tungsten in Na_2WO_4-ZnO-WO_3 melt at 1173 K on low activation steel substrates was studied in this work.Adherent and smooth tungsten films were deposited under various pulsed current conditions.The crystal structure and microstructure of tungsten deposits were characterized by XRD,SEM and EDX techniques.The results show that pulsed current density and duty cycle have a significant influence on tungsten nucleation and electro-crystallization phenomena.Uniform and smooth tungsten coating with high purity and high adherence is obtained on low active steel substrates as cathodic current density ranges from 35 to 25 mA·cm_(-2).展开更多
Electrical conductivity of NaF-AlF3 melts was measured by continuously varying cell constant(CVCC) technique. Relationships between equivalent conductivity at 990-1 030 ℃ and temperature and composition, and relation...Electrical conductivity of NaF-AlF3 melts was measured by continuously varying cell constant(CVCC) technique. Relationships between equivalent conductivity at 990-1 030 ℃ and temperature and composition, and relationship between equivalent conductivity activation energy and composition of the melts were then studied on the basis of two-step decomposition mechanism of AlF63-. According to the changes of molar fractions of different anions in NaF-AlF3 melts, courses of dependence of equivalent conductivity and its activation energy on composition were analyzed. The results show that the influence of temperature on equivalent conductivity of the melts is small in the researched temperature range, and equivalent conductivity increases with increasing the molar fraction of AlF3; there is a minimum point in the activation energy—composition curve when molar fraction of AlF3 is 0.29.展开更多
New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which sem...New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which semi-solid billet with fine spheroidal grains and average grain size of 18 μm can be prepared. Furthermore, average grain size of semi-solid billet is reduced with increasing extrusion pass of AZ91D magnesium alloy obtained in ECAE process. By using semi-solid billet prepared by new SIMA, thixoforged magazine plates component with high mechanical properties such as yield strength of 201.4 MPa, ultimate tensile strength of 321.8 MPa and elongation of 15.3%, can be obtained.展开更多
The polyoxometalate(POM)-imidazole ionic liquid(IL) [C8mim]2[Mo6O19](C8mim=1-methyl-3-octylimi- dazolium) with a low melting point of 82.6 °C was successfully prepared and characterized by FTIR, XPS, NMR, T...The polyoxometalate(POM)-imidazole ionic liquid(IL) [C8mim]2[Mo6O19](C8mim=1-methyl-3-octylimi- dazolium) with a low melting point of 82.6 °C was successfully prepared and characterized by FTIR, XPS, NMR, TG and so on. The polyoxomolybdate-based IL has high stability, and its decomposing temperature reaches 321 °C, which is higher than that of 1-alkyl-3-methylimidazolium halides IL. Further photocatalytic performances of the IL were measured via degrading dye rhodamine B(RB) in aqueous solution under the UV light irradiation. The experiments show that the conversion of RB reaches 80.5% after 90 min under UV-light and the degradation efficiency depends on the pH value of the solution, irradiation time and the dosage of the IL and so on.展开更多
Activitibs of Si in binary Cu-Si and ternary Cu-Ti-Si melts were measured at 1 550℃ by using a method of chemical equilIbrium between gas and liquid. The activity interaction coefficients of Si in the melts have been...Activitibs of Si in binary Cu-Si and ternary Cu-Ti-Si melts were measured at 1 550℃ by using a method of chemical equilIbrium between gas and liquid. The activity interaction coefficients of Si in the melts have been determined from the experimental data (lny = -5.69. s = 6.69. P2: = -26.22. E; =-43.96) and activity interaction coefficients of Ti in binary Cu-Ti melt at 1550℃ has been estimated from Sommer's data based on the regular solution model (lny =-1 .10. : = 2.95.p:=-2.10).展开更多
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r...The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.展开更多
The temperature field distribution and thermal history of Fe-9Cr2WVTa reduced activation steel prepared by laser melting deposition(LMD)have been calculated with Gaussian and Ring laser beams,and the nucleation and gr...The temperature field distribution and thermal history of Fe-9Cr2WVTa reduced activation steel prepared by laser melting deposition(LMD)have been calculated with Gaussian and Ring laser beams,and the nucleation and growth behaviors of M_(23)C_(6)precipitates in the 1st,7th and 19th layers have been calculated using the modified classical nucleation theory and Svoboda Fischer Fratzl Kozeschnik model.The energy distribution shows W-shape with Ring laser beam while it shows V-shape with Gaussian laser beam,which results in the more uniform M_(23)C_(6)size in the same layer with Ring laser beam.Precipitates in the bottom(i.e.,the 1st layer)have the minimum size and the size increases with the layer number with Gaussian and Ring laser beams.The temperature history,the instantaneous nucleation rate and the size evolution of M_(23)C_(6)have been systematically discussed.The results indicate that the nucleation,growth and re-dissolution of precipitates in reduced activation steel depend on the amount of energy absorbed in the thermal cycle during LMD.The continuous accumulation of energy during the thermal cycle leads to larger M_(23)C_(6)at the top area.The unsteady state precipitation dynamics of M_(23)C_(6)carbides during thermal cycling are consistent with the simulation results.展开更多
Based on the coexistence theory of slag melt structure and Butler’s equation,a new calculation model has been proposed for the calculation of surface tension of slag melt.This model establishes a specific correlation...Based on the coexistence theory of slag melt structure and Butler’s equation,a new calculation model has been proposed for the calculation of surface tension of slag melt.This model establishes a specific correlation between surface tension and mass action concentrations(activities) in the melt and on its surface on the basis of inner and surficial structures of slag melt.Calculated surface tensions of CaO-SiOand MnO-SiOslag melts are consistent with those measured.Furthermore,iso-surface tension lines of CaO-MnO-SiOslag melt have also been calculated.展开更多
文摘The microstructural properties and electrochemical performance of zinc(Zn)sacrificial anodes during strain-induced melt activation(SIMA)were investigated in this study.The samples were subjected to a compressive ratio of 20%-50% at various temperatures(425-435℃)and durations(5-30 min).Short-term electrochemical tests(anode tests)based on DNV-RP-B401 and potentiodynamic polarization tests were performed in 3.5wt%NaCl solution to evaluate the electrochemical efficiency and corrosion behavior of the samples,respectively.The electrochemical test results for the optimum sample confirmed that the corrosion current density declined by 90% and the anode efficiency slightly decreased relative to that of the raw sample.Energy-dispersive X-ray spectroscopy,scanning electron microscopy,metallographic images,and microhardness profiles showed the accumulation of alloying elements on the boundary and the conversion of uniform corrosion into localized corrosion,hence the decrease of the Zn sacrificial anode’s efficiency after the SIMA process.
文摘The effects of Al-8B grain refiner on microstructure and tensile properties of an Al-12Zn-3Mg-2.5Cu alloy produced by modified strain induced melt activation process were investigated. Pre-deformation of 60% was used by hot working at 300 ℃. After pre-deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures(500, 550 and 590 ℃) for varying time(10, 20 and 40 min). It was observed that strain induced melt activation has caused the globular morphology of α(Al) grains. Microstructural study was carried out on the alloy by using optical microscope and scanning electron microscope in both unrefined and B-refined conditions. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 550 ℃ and 10 min, respectively. After the T6 heat treatment, the average tensile strengths increased from 278 to 585 MPa and 252 to 560 MPa for samples refined with 3.75% Al-8B before and after SIMA process, respectively. The ultimate strength of SIMA specimens is lower than that of B-refined specimens.
基金supported by the International Thermonuclear Experimental Reactor (ITER) Project of China (No. 2010GB109000)the National Natural Science Foundation of China (No. 50972008)
文摘Tungsten coating is considered as a promising alternative material for plasma facing materials(PFC) in future fusion devices.The electro-deposition of tungsten in Na_2WO_4-ZnO-WO_3 melt at 1173 K on low activation steel substrates was studied in this work.Adherent and smooth tungsten films were deposited under various pulsed current conditions.The crystal structure and microstructure of tungsten deposits were characterized by XRD,SEM and EDX techniques.The results show that pulsed current density and duty cycle have a significant influence on tungsten nucleation and electro-crystallization phenomena.Uniform and smooth tungsten coating with high purity and high adherence is obtained on low active steel substrates as cathodic current density ranges from 35 to 25 mA·cm_(-2).
基金Project(50334030) supported by the National Natural Science Foundation of ChinaProject(2007CB210305) supported by National Basic Research Program of China
文摘Electrical conductivity of NaF-AlF3 melts was measured by continuously varying cell constant(CVCC) technique. Relationships between equivalent conductivity at 990-1 030 ℃ and temperature and composition, and relationship between equivalent conductivity activation energy and composition of the melts were then studied on the basis of two-step decomposition mechanism of AlF63-. According to the changes of molar fractions of different anions in NaF-AlF3 melts, courses of dependence of equivalent conductivity and its activation energy on composition were analyzed. The results show that the influence of temperature on equivalent conductivity of the melts is small in the researched temperature range, and equivalent conductivity increases with increasing the molar fraction of AlF3; there is a minimum point in the activation energy—composition curve when molar fraction of AlF3 is 0.29.
基金Project(50475029, 50605015) supported by the National Natural Science Foundation of China
文摘New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which semi-solid billet with fine spheroidal grains and average grain size of 18 μm can be prepared. Furthermore, average grain size of semi-solid billet is reduced with increasing extrusion pass of AZ91D magnesium alloy obtained in ECAE process. By using semi-solid billet prepared by new SIMA, thixoforged magazine plates component with high mechanical properties such as yield strength of 201.4 MPa, ultimate tensile strength of 321.8 MPa and elongation of 15.3%, can be obtained.
基金Supported by the National Natural Science Foundation of China(Nos.2067101120731002+3 种基金20801004 10876002 20801005)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200800070015).
文摘The polyoxometalate(POM)-imidazole ionic liquid(IL) [C8mim]2[Mo6O19](C8mim=1-methyl-3-octylimi- dazolium) with a low melting point of 82.6 °C was successfully prepared and characterized by FTIR, XPS, NMR, TG and so on. The polyoxomolybdate-based IL has high stability, and its decomposing temperature reaches 321 °C, which is higher than that of 1-alkyl-3-methylimidazolium halides IL. Further photocatalytic performances of the IL were measured via degrading dye rhodamine B(RB) in aqueous solution under the UV light irradiation. The experiments show that the conversion of RB reaches 80.5% after 90 min under UV-light and the degradation efficiency depends on the pH value of the solution, irradiation time and the dosage of the IL and so on.
文摘Activitibs of Si in binary Cu-Si and ternary Cu-Ti-Si melts were measured at 1 550℃ by using a method of chemical equilIbrium between gas and liquid. The activity interaction coefficients of Si in the melts have been determined from the experimental data (lny = -5.69. s = 6.69. P2: = -26.22. E; =-43.96) and activity interaction coefficients of Ti in binary Cu-Ti melt at 1550℃ has been estimated from Sommer's data based on the regular solution model (lny =-1 .10. : = 2.95.p:=-2.10).
基金National Natural Science Foundation of China (42041004)。
文摘The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.
基金This work is supported by NSAF(Grant No.U2030102)National Natural Science Foundation of China(Grant Nos.52071124 and 51701134)State Key Laboratory of New Ceramic and Fine Processing,Tsinghua University(No.KF202115).
文摘The temperature field distribution and thermal history of Fe-9Cr2WVTa reduced activation steel prepared by laser melting deposition(LMD)have been calculated with Gaussian and Ring laser beams,and the nucleation and growth behaviors of M_(23)C_(6)precipitates in the 1st,7th and 19th layers have been calculated using the modified classical nucleation theory and Svoboda Fischer Fratzl Kozeschnik model.The energy distribution shows W-shape with Ring laser beam while it shows V-shape with Gaussian laser beam,which results in the more uniform M_(23)C_(6)size in the same layer with Ring laser beam.Precipitates in the bottom(i.e.,the 1st layer)have the minimum size and the size increases with the layer number with Gaussian and Ring laser beams.The temperature history,the instantaneous nucleation rate and the size evolution of M_(23)C_(6)have been systematically discussed.The results indicate that the nucleation,growth and re-dissolution of precipitates in reduced activation steel depend on the amount of energy absorbed in the thermal cycle during LMD.The continuous accumulation of energy during the thermal cycle leads to larger M_(23)C_(6)at the top area.The unsteady state precipitation dynamics of M_(23)C_(6)carbides during thermal cycling are consistent with the simulation results.
文摘Based on the coexistence theory of slag melt structure and Butler’s equation,a new calculation model has been proposed for the calculation of surface tension of slag melt.This model establishes a specific correlation between surface tension and mass action concentrations(activities) in the melt and on its surface on the basis of inner and surficial structures of slag melt.Calculated surface tensions of CaO-SiOand MnO-SiOslag melts are consistent with those measured.Furthermore,iso-surface tension lines of CaO-MnO-SiOslag melt have also been calculated.