Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) perform...Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. GoodPL results were obtained under condition of growth an interruption of 10 s combined with a moderatestrain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed intodevices. Broad area lasers (100 μm x 500 μm) show very low threshold current densities (43 A/cm^2)and high slop efficiency (0.34 W/A, per facet).展开更多
We investigate the molecular-beam-epitaxy growth of highly relaxed Si0.45 Ge0.55 films with very low dislocation densities. By using the Si3N4 film as the mask material, the Si0.45Ge0.55 film can be grown on a composi...We investigate the molecular-beam-epitaxy growth of highly relaxed Si0.45 Ge0.55 films with very low dislocation densities. By using the Si3N4 film as the mask material, the Si0.45Ge0.55 film can be grown on a compositionally stepwise graded SiGe buffer layer in 3 μm× 3 μm windows on a Si (001) substrate. Raman scattering spectroscopy measurement shows that more than 90% strain of the Si0.45Ge0.55 film is relaxed, and almost neither misfit dislocation lines nor etch pits of thread dislocations could be observed when the sample is etched by the modified Schimmel etchant. We suggest that the results can be explained by influence of the edge-induced strain relaxation of the epitaxial film and the edge-induced stress of the mask material.展开更多
BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain ...BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.展开更多
文摘Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. GoodPL results were obtained under condition of growth an interruption of 10 s combined with a moderatestrain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed intodevices. Broad area lasers (100 μm x 500 μm) show very low threshold current densities (43 A/cm^2)and high slop efficiency (0.34 W/A, per facet).
基金Supported by the National Natural Science Foundation of China under Grant No 60376012, and the State Key Laboratory of Functional Materials of Informatics, Chinese Academy of Sciences.
文摘We investigate the molecular-beam-epitaxy growth of highly relaxed Si0.45 Ge0.55 films with very low dislocation densities. By using the Si3N4 film as the mask material, the Si0.45Ge0.55 film can be grown on a compositionally stepwise graded SiGe buffer layer in 3 μm× 3 μm windows on a Si (001) substrate. Raman scattering spectroscopy measurement shows that more than 90% strain of the Si0.45Ge0.55 film is relaxed, and almost neither misfit dislocation lines nor etch pits of thread dislocations could be observed when the sample is etched by the modified Schimmel etchant. We suggest that the results can be explained by influence of the edge-induced strain relaxation of the epitaxial film and the edge-induced stress of the mask material.
基金supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921002, and 2013CBA01703)the National Natural Science Foundation of China (Grant Nos. 11174355, 11674385, and 11574365)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200)
文摘BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.