期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Genetic Diversity and Global Distribution of Citrus tristeza virus (CTV) Strains
1
作者 Wu Xiao-yun Cheng Xiao-fei +1 位作者 Luo Lu Wu Xiao-xia 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第2期9-18,共10页
Citrus tristeza virus (CTV), the most devastating viral pathogen in citrus, causes tremendous economic losses to citrus industry worldwide. The CTV isolates exhibit variable pathogenicities on their hosts indicating... Citrus tristeza virus (CTV), the most devastating viral pathogen in citrus, causes tremendous economic losses to citrus industry worldwide. The CTV isolates exhibit variable pathogenicities on their hosts indicating a mixed population of the CTV in nature. Several fragments within the CTV genome have been used for studying the genetic diversity of the CTV, however, the best region for rapid the CTV strain differentiation is still absent at present. In present study, a systemic analysis was carried out to evaluate the best region within the CTV genome for rapid CTV strain differentiation. Results of our study showed that the major coat protein (CP) coding region was the best region for this purpose. Using pair-wise distance frequency distribution plot, a reasonable genetic distance cut-off value was set for the CTV CP gene for the CTV strain differentiation. Using this criterion, eight CTV strains, including seven well characterized and a new strain, were successfully differentiated using 537 CTV isolates reported from 38 countries. The global strain distribution pattern was then determined and discussed. Our results also provided a new insight into the evolution and spreading of the virus, as well as the information for developing proper disease management strategy. 展开更多
关键词 Citrus tristeza virus phylogenetic analysis strain differentiation recombination strain distribution pattern EVOLUTION
下载PDF
Distribution of Inherent Strains and Residual Stressesin Medium Thickness Plate Weldment
2
作者 Peng HE and Jiuhai ZHANG National Key Laboratory of Advanced Welding Production Technology, HIT, Harbin 150001, China Toshio Terasaki and Testuya Akiyama Department of Materials Science and Engineering, Kyushu Institute of Technology, Japan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期252-256,共5页
A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal resi... A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed. 展开更多
关键词 In distribution of Inherent strains and Residual Stressesin Medium Thickness Plate Weldment TA
下载PDF
Integrated wellbore-reservoir-geomechanics modeling for enhanced interpretation of distributed fiber-optic strain sensing data in hydraulicfracture analysis
3
作者 Lijun Liu Xinglin Guo Xiaoguang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3136-3148,共13页
Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS response... Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization. 展开更多
关键词 Distributed strain sensing Fracture diagnostic Coupled flow and geomechanics Transient wellbore flow
下载PDF
Study of Stress and Strain Distributions of First Pass Conventional Spinning Under Different Roller-trace 被引量:7
4
作者 LIU Jian-hua, YANG He, LI Yu-qiang (College of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期62-,共1页
Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasona... Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning. 展开更多
关键词 multi-pass conventional spinning roller traces stress and strain distributions numerical simulation
下载PDF
Double linear strain distribution assumption of RC beam strengthened with external-bonded or near-surface mounted fiber reinforced plastic 被引量:4
5
作者 任振华 刘汉龙 周丰峻 《Journal of Central South University》 SCIE EI CAS 2012年第12期3582-3594,共13页
Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain... Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain coordination results of 34 reinforced concrete beams(four groups)strengthened with different methods were presented including external-bonded or near-surface mounted glass or carbon FRP or helical rib bar in order to study the strain coordination of the strengthening materials and steel rebar of RC beam.Because there is relative slipping between concrete and strengthening materials(SM),the strain of SM and steel rebar of RC beam satisfies the double linear strain distribution assumption,that is,the strain of longitudinal fiber parallel to the neutral axis of plated beam within the scope of effective height(h0)of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of SM and steel rebar satisfies the equation εGCH=βεsteel,where the value of β is equal to 1.1-1.3 according to the test results. 展开更多
关键词 double linear strain distribution assumption external-bonded structure near-surface mounted structure fiber reinforced plastic strengthening concrete beam
下载PDF
Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints 被引量:6
6
作者 Mohammad Derikvand Ghanbar Ebrahimi 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第3期677-681,共5页
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&amp;LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose ... We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&amp;LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&amp;LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints. 展开更多
关键词 bending moment capacity failure mode finite element furniture mortise and loose tenon joint stress and strain distributions
下载PDF
Finite element analysis of stress and strain distributions in InAs/GaAs quantum dots 被引量:1
7
作者 周旺民 王崇愚 +1 位作者 陈涌海 王占国 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1315-1319,共5页
In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element me... In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element method (FEM). The stresses and strains are concentrated at the boundaries of the WL and QDs, are reduced gradually from the boundaries to the interior, and tend to a uniform state for the positions away from the boundaries. The maximal strain energy density occurs at the vicinity of the interface between the WL and the substrate. The stresses, strains and released strain energy are reduced gradually with increasing WL thickness. The above results show that a critical WL thickness may exist, and the stress and strain distributions can make the growth of QDs a growth of strained three-dimensional island when the WL thickness is above the critical value, and FEM can be applied to investigate such nanosystems, QDs, and the relevant results are supported by the experiments. 展开更多
关键词 quantum dots strain and stress distribution strain energy finite element method
下载PDF
Strain distributions and electronic structure of three-dimensional InAs/GaAs quantum rings
8
作者 刘玉敏 俞重远 +5 位作者 贾博雍 徐子欢 姚文杰 陈智辉 芦鹏飞 韩利红 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4667-4675,共9页
This paper presents a finite element calculation for the electronic structure and strain distribution of self-organized InAs/GaAs quantum rings. The strain distribution calculations are based on the continuum elastic ... This paper presents a finite element calculation for the electronic structure and strain distribution of self-organized InAs/GaAs quantum rings. The strain distribution calculations are based on the continuum elastic theory. An ideal three-dimensional circular quantum ring model is adopted in this work. The electron and heavy-hole energy levels of the InAs/GaAs quantum rings are calculated by solving the three-dimensional effective mass SchrSdinger equation including the deformation potential and piezoelectric potential up to the second order induced by the strain. The calculated results show the importance of strain and piezoelectric effects, and these effects should be taken into consideration in analysis of the optoelectronic characteristics of strain quantum rings. 展开更多
关键词 quantum ring strain distribution electronic structure
下载PDF
The influence of strain-reducing layer on strain distribution and ground state energy levels of GaN/AlN quantum dot
9
作者 刘玉敏 俞重远 +1 位作者 任晓敏 徐子欢 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4136-4142,共7页
This article deals with the strain distributions around GaN/AlN quantum dots by using the finite element method. Special attention is paid to the influence of Al0.2Ga0.8N strain-reducing layer on strain distribution a... This article deals with the strain distributions around GaN/AlN quantum dots by using the finite element method. Special attention is paid to the influence of Al0.2Ga0.8N strain-reducing layer on strain distribution and electronic structure. The numerical results show that the horizontal and the vertical strain components are reinforced in the GaN quantum dot due to the presence of the strain-reducing layer, but the hydrostatic strain in the quantum dot is not influenced. According to the deformation potential theory, we study the band edge modifications and the piezoelectric effects. The result demonstrates that with the increase of the strain reducing layer, the transition energy between the ground state electron and the heavy hole increases. This result is consistent with the emission wavelength blue shift phenomenon observed in the experiment and confirms that the wavelength shifts toward the short wavelength range is realizable by adjusting the structure-dependent parameters of GaN/AlN quantum dot. 展开更多
关键词 quantum dot strain distribution electronic structure
下载PDF
Stability Analysis of Landfills Contained by Retaining Walls Using Continuous Stress Method
10
作者 Yufang Zhang Yingfa Lu +2 位作者 Yao Zhong Jian Li Dongze Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期357-381,共25页
An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the ... An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall. 展开更多
关键词 Stress distribution strain distribution LANDFILL retaining wall numerical analysis
下载PDF
Influences of electric-hydraulic chattering on backward extrusion process of 6061 aluminum alloy 被引量:4
11
作者 胡新华 王志恒 +3 位作者 鲍官军 洪潇潇 薛军义 杨庆华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期3056-3063,共8页
The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were pe... The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method. 展开更多
关键词 6061aluminum alloy conventional backward extrusion electric-hydraulic chattering assisted backward extrusion finite element analysis material flow strain distribution
下载PDF
Experimental study on concrete columns hybrid reinforced by steel and FRP bars under seismic loading 被引量:1
12
作者 孙泽阳 吴刚 +1 位作者 王燕华 吴智深 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期439-444,共6页
In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordina... In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance. 展开更多
关键词 concrete column shaking table test hybrid reinforcement peak ground acceleration strain distribution
下载PDF
Modal macro-strain identification from operational macro-strain shape under changing loading conditions 被引量:1
13
作者 李舒 徐赵东 +1 位作者 王少杰 吴智深 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期219-225,共7页
To develop modal macro-strain ( MMS ) identification techniques and improve their applicability in a continuous health monitoring system for civil infrastructures, the concept of operational macro-strain shape (OMS... To develop modal macro-strain ( MMS ) identification techniques and improve their applicability in a continuous health monitoring system for civil infrastructures, the concept of operational macro-strain shape (OMSS) and the corresponding identification method are proposed under unknown ever-changing loading conditions, and the MMS is then obtained. The core of the proposed technique is mainly based on the specific property that the macro-strain transmissibility tends to be independent of external excitations at the poles of the system and converges to a unique value. The proposed method is verified using the experimental data from a three-span continuous beam excited by an impact hammer at different locations. The identified results are also compared with the commonly used methods, such as the peak- picking (PP) method, the stochastic subspace identification (SSI) method, and numerical results, in the case of unknown input forces. Results show that the proposed technique has unique merits in accuracy and robustness due to its combining multiple tests under changing loading conditions, which also reveal the promising application of the distributed strain sensing system in identifying MMS of operational structures, as well as in the structural health monitoring (SHM) field. 展开更多
关键词 macro-stain/distributed strain fiber Bragggrating FBG operational modal analysis OMA operational deflection shape (ODS) TRANSMISSIBILITY
下载PDF
Influence of excavation schemes on slope stability: A DEM study 被引量:9
14
作者 WANG Zhen-yu GU Dong-ming ZHANG Wen-gang 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1509-1522,共14页
Slope failure due to improper excavation is one of common engineering disasters in China.To explore the failure mechanism of soil slope induced by toe excavation,especially to investigate the influence of excavation u... Slope failure due to improper excavation is one of common engineering disasters in China.To explore the failure mechanism of soil slope induced by toe excavation,especially to investigate the influence of excavation unloading path and rate on slope stability,a numerical slope model was built via particle flow code PFC2 D.The development of crack and strain during excavation were obtained and used to evaluate the deformation characteristics.Furthermore,excavation types representing different unloading paths and rates were compared in terms of crack number and strain level.Results indicate that crack number and strain level induced by horizontal column excavation are much greater than those of vertical column excavation and oblique excavation.The crack number and strain level increase with excavation unloading rate.Besides,the feasibility of taking the average strain of slope surface and the average value of maximum strain along monitoring lines to represent the global deformation characteristics were discussed.This study can provide a theoretical guidance for slope monitoring and preliminary optimal selection of excavation scheme in the design and construction of slope engineering. 展开更多
关键词 Slope toe excavation Unloading path Unloading rate Strain distribution Slope stability Discrete element method
下载PDF
Properties inhomogeneity of AM60 magnesium alloy processed by cyclic extrusion compression angular pressing followed by extrusion 被引量:9
15
作者 Siroos AHMADI Vali ALIMIRZALOO +1 位作者 Ghader FARAJI Ali DONIAVI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期655-665,共11页
A new severe plastic deformation(SPD)technique for improvement of the metallurgical properties of the magnesium alloys is presented.In this process,a cyclic extrusion compression angular pressing(CECAP)process is foll... A new severe plastic deformation(SPD)technique for improvement of the metallurgical properties of the magnesium alloys is presented.In this process,a cyclic extrusion compression angular pressing(CECAP)process is followed by an extrusion step in the outlet playing the role of additional back pressure.Therefore,more uniform and enhanced mechanical properties are expected in comparison with equal channel angular pressing(ECAP).In order to evaluate the effectiveness and capabilities of this new method,an AM60 magnesium alloy was processed.Finite element results exhibited a significant increase in strain values as well as uniform strain distribution for the new method.In addition,~110%increase in compressive stress was observed in new method compared to the conventional ECAP.Experimental results revealed a noticeable increase in the hardness and strength of the specimens processed by the new technique as a result of the formation of finer grains and more homogeneous microstructure with good distribution of refinedβ-phase along the boundaries.It may be concluded that the new process is very promising for future magnesium alloy products. 展开更多
关键词 cyclic extrusion compression angular pressing AM60 alloy strain distribution mechanical properties grain refinement
下载PDF
Distributed Fiber Optic Monitoring and Stability Analysis of a Model Slope under Surcharge Loading 被引量:23
16
作者 ZHU Hong-Hu SHI Bin +2 位作者 ZHANG Jie YAN Jun-Fan ZHANG Cheng-Cheng 《Journal of Mountain Science》 SCIE CSCD 2014年第4期979-989,共11页
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso... In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope. 展开更多
关键词 Slope stability Geotechnical monitoring Fiber optic sensor Distributed strain sensing Brillouin optical time-domain analysis (BOTDA) Model test
下载PDF
Experimental study on uplift mechanism of pipeline buried in sand using high-resolution fiber optic strain sensing nerves 被引量:8
17
作者 Haojie Li Honghu Zhu +2 位作者 Yuanhai Li Chunxin Zhang Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1304-1318,共15页
Reliable assessment of uplift capacity of buried pipelines against upheaval buckling requires a valid failure mechanism and a reliable real-time monitoring technique.This paper presents a sensing solution for evaluati... Reliable assessment of uplift capacity of buried pipelines against upheaval buckling requires a valid failure mechanism and a reliable real-time monitoring technique.This paper presents a sensing solution for evaluating uplift capacity of pipelines buried in sand using fiber optic strain sensing(FOSS)nerves.Upward pipe-soil interaction(PSI)was investigated through a series of scaled tests,in which the FOSS and image analysis techniques were used to capture the failure patterns.The published prediction models were evaluated and modified according to observations in the present study as well as a database of 41 pipe loading tests assembled from the literature.Axial strain measurements of FOSS nerves horizontally installed above the pipeline were correlated with the failure behavior of the overlying soil.The test results indicate that the previous analytical models could be further improved regarding their estimations in the failure geometry and mobilization distance at the peak uplift resistance.For typical slip plane failure forms,inclined shear bands star from the pipe shoulder,instead of the springline,and have not yet reached the ground surface at the peak resistance.The vertical inclination of curved shear bands decreases with increasing uplift displacements at the post-peak periods.At large displacements,the upward movement is confined to the deeper ground,and the slip plane failure progressively changes to the flow-around.The feasibility of FOSS in pipe uplift resistance prediction was validated through the comparison with image analyses.In addition,the shear band locations can be identified using fiber optic strain measurements.Finally,the advantages and limits of the FOSS system are discussed in terms of different levels in upward PSI assessment,including failure identification,location,and quantification. 展开更多
关键词 Pipe-soil interaction(PSI) Upheaval buckling Distributed strain sensing Image analysis Uplift resistance prediction Interfacial behavior
下载PDF
Mechanical Properties of Sea Water Sea Sand Coral Concrete Modified with Different Cement and Fiber Types 被引量:4
18
作者 Xibo Qi Yijie Huang +3 位作者 Xiaowei Li Zhenhua Hu Jingwei Ying Dayong Li 《Journal of Renewable Materials》 SCIE EI 2020年第8期915-937,共23页
The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An exp... The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation(DIC)method to analyze the strain distribution and crack propagation of specimen.Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers(SSF),while polypropylene fibers(PF)enhanced the SWSSCC peak deformation.It was found that the elastic modulus and strength of SWSSCC using ordinary Portland cement(OPC)were higher compared to specimen with low alkalinity sulphoaluminate cement(LAS).Typical strain distribution changed with the variation of fiber types.The propagation and characteristics of cracks in SWSSCC containing PF were similar to those of cracks in SWSSCC.However,the propagation of cracks and the development of plastic deformation in SWSSCC were effectively hindered by adopting SSF.Finally,an analytical stress-strain expression of specimen considering the influences of fibers was established.The obtained results would provide a basis for the application of SWSSCC. 展开更多
关键词 Sea water sea sand coral concrete modified concrete mechanical properties stress-strain curve crack propagation strain distribution
下载PDF
STRAIN REGULARITY IN REINFORCERS OF SHORT-FIBER/ WHISKER REINFORCED COMPOSITE AND ITS APPLICATION 被引量:2
19
作者 王迺鹏 刘秋云 刘晓宇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期204-210,共7页
Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to t... Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to the macro-linear strain along the same direction. Quantitative relation between λ and microstructure parameters of the composite is obtained. As an example of applying and verifying λ, the stress-strain curve of [AlBO]w/Al composite under tensile loading is predicted and favorably compared with experiments. By using λ, the stiffness modulus of the composite with arbitrary reinforcer orientation under any loading condition is predicted from the microstructure parameters of material. 展开更多
关键词 short-fiber/whisker reinforced composite strain distribution stiffness prediction
下载PDF
Sampling Moiré method for full-field deformation measurement: A brief review 被引量:2
20
作者 Qinghua Wang Shien Ri 《Theoretical & Applied Mechanics Letters》 CSCD 2022年第1期42-48,共7页
The sampling Moiré(SM) method is one of the vision-based non-contact deformation measurement methods, which is a powerful tool for structural health monitoring and elucidation of damage mechanisms of materials. I... The sampling Moiré(SM) method is one of the vision-based non-contact deformation measurement methods, which is a powerful tool for structural health monitoring and elucidation of damage mechanisms of materials. In this review, the basic principle of the SM method for measuring the twodimensional displacement and strain distributions is introduced. When the grid is not a standard orthogonal grating and cracks exist on the specimen surface, the measurement methods are also stated. Two of the most typical application examples are described in detail. One is the dynamic deflection measurement of a large-scale concrete bridge, and the other is the residual thermal strain measurement of small-scale flip chip packages. Several further development points of this method are pointed out. The SM method is expected to be used for deformation measurement of various structures and materials for residual stress evaluation, crack location prediction, and crack growth evaluation on broad scales. 展开更多
关键词 Displacement measurement Strain distribution BRIDGE Flip chip package
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部