This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Stati...This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Static load tests and health monitoring-based assessment were carried out before and after reinforcement.Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20%after reinforcement,and the flexural strength and stiffness of the strengthened beam are improved.The deflection and strain data of health monitoring of the specified section are collected.The deflection of the second span is 4 mm~10 mm,the strain range of the upper edge of the second span is-10με~-40με,and the strain range of the lower edge is 30με~75με.These values show the deflection and strain values fluctuate within a prescribed range,verifying the safety of the bridge.The reinforcement method of prestressed steel strand is feasible and effective.It can provide reference basis for the application of external prestressed strand reinforcement technology in similar projects.展开更多
This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use...This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.展开更多
Along with the expanding of span of cable-stayed bridge,wind load becomes a more and more important controlling factor for bridge the design.A very large proportion of the wind load acting on cables has exceeded that ...Along with the expanding of span of cable-stayed bridge,wind load becomes a more and more important controlling factor for bridge the design.A very large proportion of the wind load acting on cables has exceeded that acting on deck.There was not any detailed prescript in Chinese code for calculation of longitudinal wind load on cables due to lack of theoretical research and experiment,and conservative simplified calculation was adopted during design,which leads to conservative and uneconomical design of structures.To resolve this problem,cable force experiment was carried out during the design of Sutong Bridge.By comparing with international research results,the calculation formula of longitudinal wind drag coefficient for cables was advanced to fill the blank of bridge wind resistant code of China,and has already been adopted in the Highway Bridge Wind Resistant Design Code(JTG/T D60-01-2004)with great significance for bridge engineering.展开更多
Based on the updated finite-element model of a cable-stayed bridge, this study investigates the technique of identifying damage existing in cable or girder by means of numerical simulation. The modal analysis is perfo...Based on the updated finite-element model of a cable-stayed bridge, this study investigates the technique of identifying damage existing in cable or girder by means of numerical simulation. The modal analysis is performed to identify the changes in modal fiequencies and curvatures caused by damage, and the static analysis is executed to detect the influence of damage on cable force. The results indicate a relatively significant decrease in frequencies of lower vertical bending modes due to the damage in cable and little change of frequencies due to damage in girder. Different sensitivities to the location of damaged cable are observed from the fiequency changes of different bending modes, which can be used to initially locate the damaged cable. The damage in either cable or girder can be further localized by the most significant change in curvature of girder. The damage occurred in a cable produces a remarkable change in force of nearby cables, whereas the damage in girder brings little change of cable forces. In addition, a pragmatic approach for localizing the damage in girder or cable is proposed based on a comprehensive utilization of the changes in frequency of vertical bending modes, modal curvature of girder, and force in cables.展开更多
In the background of the construction of Sutong Yangtze River Bridge(short as Sutong Bridge),the cable construction method and techniques of a thousand-meter scale cable-stayed bridge are introduced.Some key construct...In the background of the construction of Sutong Yangtze River Bridge(short as Sutong Bridge),the cable construction method and techniques of a thousand-meter scale cable-stayed bridge are introduced.Some key construction techniques,such as outspreading cable on deck,installing cable at pylon,pulling and fixing cable at the attachment with decks and cable PE sheath protection are discussed.展开更多
The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the resp...The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.展开更多
In this paper,in order to improve the precision of cable force identification of a practical cable-stayed bridge and consider some precision problems of vibration method in surveying the cable force in the engineering...In this paper,in order to improve the precision of cable force identification of a practical cable-stayed bridge and consider some precision problems of vibration method in surveying the cable force in the engineering application,firstly,three calculation methods for the cable force measurement are analyzed and contrasted;secondly,using the method of finite element numerical simulation and the theory of the error analysis,the effect of both bending rigidity and constraint conditions on simple formula of vibration method is investigated;and the dependence of the precision of cable frequency identification on spectrum resolution,sampling time,and the number of sampling points is studied;Finally,fundamental frequency method,frequency difference method,and peak value method are applied to the cable force calculation of a practical project;and their computational precision and error are contrasted and analyzed.It is observed that it is essential to take into account the effect of every factor on the precision of the cable force identification and make it possible to identify the cable force more accurate by vibration method;and that it simultaneously provides an effective basis for the development of a high-precision equipment.展开更多
The model combined by cable,girder and damper is founded to study the influence of girder vibration on cable damper 's performance of a cable-stayed bridge. The complex mode method and nondimensionalization are us...The model combined by cable,girder and damper is founded to study the influence of girder vibration on cable damper 's performance of a cable-stayed bridge. The complex mode method and nondimensionalization are used to analyze the relationship between the girder's parameters and the performance of cable-related damper. The results indicate that the performance of cable-related damper will decrease greatly when the girder frequencies are near the frequencies of cable. The smaller absolute displacement of damper's piston caused by the very small vibration phase shift of girder and cable is the physical cause of the negative impact mentioned above.展开更多
Three methods for calculating cable force (analytic method, fitting method and finite element method) are analyzed and compared. The effects of boundary condition, spectrum resolution, sampling time, and number of s...Three methods for calculating cable force (analytic method, fitting method and finite element method) are analyzed and compared. The effects of boundary condition, spectrum resolution, sampling time, and number of sampling points on the precision of cable force identification are discussed, and error analysis is conducted. The results of three methods applied to a practical project are significantly less than the design value. Comparatively, the result of finite element method is the closest to the design value. Moreover, their computational precision and error are compared and analyzed. The precision of frequency identification of cables, long cables in particular, is strongly affected by frequency resolution. If the frequency resolution is included in calculating the cable force, the identification error can be reduced greatly.展开更多
To inspect inner wires of the cylindrical cables on a cable-stayed bridge, a new bisected wheel-based cable climbing robot is designed. The simple structure and the moving mode are described and the static features of...To inspect inner wires of the cylindrical cables on a cable-stayed bridge, a new bisected wheel-based cable climbing robot is designed. The simple structure and the moving mode are described and the static features of the robot are analyzed. A cable with a diameter of 139 mm is selected as an example to calculate the design parameters of the robot. For safety energysaving landing in the case of electrical system failure, an electric damper based on back electromotive force and a gas damper with a slider-crank mechanism are introduced to exhaust the energy generated by gravity when the robot is slipping down along the cables. A simplified mathematical model is analyzed and the landing velocity is simulated. For the present design, the robot can climb up a cable with diameters varying from 65 to 205 mm with payloads below 3.5 kg. Several climbing experiments performed on real cables confirm that the proposed robot meets the demands of inspection.展开更多
Nonlinear vibration can cause serious problems in long span cable-stayed bridges.When the internal resonance threshold is reached between the excitation frequency and natural frequency,large amplitudes occur in the ca...Nonlinear vibration can cause serious problems in long span cable-stayed bridges.When the internal resonance threshold is reached between the excitation frequency and natural frequency,large amplitudes occur in the cable.Based on the current situation of lacking corresponding constraint criteria,a model was presented for analyzing the dynamic reliability of coupling oscillation between the cable and tower in a cable-stayed bridge.First of all,in the case of cable sag,the d'Alembert principle is applied to studying the nonlinear dynamic behavior of the structure,and resonance failure interval of parametric oscillation is calculated accordingly.Then the dynamic reliability model is set up using the JC method.An application of this model has been developed for the preliminary design of one cable-stayed bridge located on Hai River in Tianjin,and time histories analysis as well as reliability indexes have been obtained.When frequency ratio between the cable and tower is approaching 1∶2,the reliability index is 0.98,indicating high failure probability.And this is consistent with theoretical derivation and experimental results in reference.This model,which is capable of computing the reliability index of resonance failure,provides theoretical basis for the establishment of corresponding rule.展开更多
In this paper, the climbing obstacle capability of the previous special cable inspection robot ( Model Number: XS1T-1) is analyzed. Static equations are established to analyze the relationships between the external...In this paper, the climbing obstacle capability of the previous special cable inspection robot ( Model Number: XS1T-1) is analyzed. Static equations are established to analyze the relationships between the external forces and the maximum height of an obstacle. Parameters affecting the obstacle crossing ability are obtained. According to the analysis results, an innovated small volume, simple structure and light weight climbing mechanism is proposed (Model Number: XS1T-2). A simplified kinematics model of the mechanism is established. With two powered wheels, the obstacle crossing ability of the XSIT-2 is improved apparently. For the robot moving without deflection, the relationships of two powered input torques are deduced. The comparison of the simulation results clearly shows that the climbing ability of XS1T-2 is obviously improved, and it can meet the demands of inspection.展开更多
As the bridge engineering community sets sails to use longer and longer spans, more and more sophisticated analysis models have to be used in the design process. One of the significant problems represents cable ruptur...As the bridge engineering community sets sails to use longer and longer spans, more and more sophisticated analysis models have to be used in the design process. One of the significant problems represents cable rupture of cable stays. The problem is also addressed in guidelines for cable-stayed bridge design such as PTI (Post-tensioning Institute) Recommendations and EC3 by quasi-static analyses using DAF (dynamic amplification factors) to account dynamic effects, which can be conducted instead ofnsing dynamic analysis. The results show that the value DAF depends on the cable rupture location and on the type and location of the examined state. Dynamic time history analysis is recommended. Some projects examples are highlighted in the paper, where the importance of above mentioned topic has been investigated, following different regulations and approaches. Professional bridge analysis and design sottware solution RM Bridge has been used for all investigations. The application can fulfill all requirements and deliver expected and accurate results. In addition, RM Bridge Sottware also helps engineers as a tool to optimize structure design and increase resistance capacity for each element to ensure the structural safety in service stage.展开更多
Stay cables, the primary load carrying components of cable-stayed bridges (CSBs), are characterised by high flexi-bility which increases with the span of the bridge. This makes stay cables vulnerable to local vibratio...Stay cables, the primary load carrying components of cable-stayed bridges (CSBs), are characterised by high flexi-bility which increases with the span of the bridge. This makes stay cables vulnerable to local vibrations which may have significant effects on the dynamic responses of long-span CSBs. Hence, it is essential to account for these effects in the assessment of the dynamics CSBs. In this paper, the dynamic responses of CSBs under vehicular loads are studied using the finite element method (FEM), while the local vibration of stay cables is analyzed using the substructure method. A case study of a cable-stayed steel bridge with a center span of 448 m demonstrates that stay cables undergo large displacements in the primary mode of the whole bridge although, in general, a cable’s local vibrations are not obvious. The road surface roughness has significant effects on the interaction force between the deck and vehicle but little effect on the global response of the bridge. Load impact factors of the main girder and tower are small, and the impact factors of the tension of cables are larger than those of the displacements of girders and towers.展开更多
文摘This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Static load tests and health monitoring-based assessment were carried out before and after reinforcement.Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20%after reinforcement,and the flexural strength and stiffness of the strengthened beam are improved.The deflection and strain data of health monitoring of the specified section are collected.The deflection of the second span is 4 mm~10 mm,the strain range of the upper edge of the second span is-10με~-40με,and the strain range of the lower edge is 30με~75με.These values show the deflection and strain values fluctuate within a prescribed range,verifying the safety of the bridge.The reinforcement method of prestressed steel strand is feasible and effective.It can provide reference basis for the application of external prestressed strand reinforcement technology in similar projects.
文摘This study provides new insights into the comparison of cable-stayed and extradosed bridges based on the safety assessment of their stay cables.These bridges are often regarded as identical structures owing to the use of inclined cables;however,the international standards for bridge design stipulate different safety factors for stay cables of both types of bridges.To address this misconception,a comparative study was carried out on the safety factors of stay cables under fatigue and ultimate limit states by considering the effects of various untoward and damaging factors,such as overloading,cable loss,and corrosion.The primary goal of this study is to describe the structural disparities between both types of bridges and evaluate their structural redundancies by employing deterministic and nondeterministic methods.To achieve this goal,three-dimensional finite-element models of both bridges were developed based on the current design guidelines for stay cables in Japan.After the balanced states of the bridge models were achieved,static analyses were performed for different safety factors of stay cables in a parametric manner.Finally,the first-order reliability method and Monte Carlo method were applied to determine the reliability index of stay cables.The analysis results show that cable-stayed and extradosed bridges exhibit different structural redundancies for different safety factors under the same loading conditions.Moreover,a significant increase in structural redundancy occurs with an incremental increase in the safety factors of stay cables.
基金National Science and Technology Support Program of China(No.2006BAG04B01)
文摘Along with the expanding of span of cable-stayed bridge,wind load becomes a more and more important controlling factor for bridge the design.A very large proportion of the wind load acting on cables has exceeded that acting on deck.There was not any detailed prescript in Chinese code for calculation of longitudinal wind load on cables due to lack of theoretical research and experiment,and conservative simplified calculation was adopted during design,which leads to conservative and uneconomical design of structures.To resolve this problem,cable force experiment was carried out during the design of Sutong Bridge.By comparing with international research results,the calculation formula of longitudinal wind drag coefficient for cables was advanced to fill the blank of bridge wind resistant code of China,and has already been adopted in the Highway Bridge Wind Resistant Design Code(JTG/T D60-01-2004)with great significance for bridge engineering.
文摘Based on the updated finite-element model of a cable-stayed bridge, this study investigates the technique of identifying damage existing in cable or girder by means of numerical simulation. The modal analysis is performed to identify the changes in modal fiequencies and curvatures caused by damage, and the static analysis is executed to detect the influence of damage on cable force. The results indicate a relatively significant decrease in frequencies of lower vertical bending modes due to the damage in cable and little change of frequencies due to damage in girder. Different sensitivities to the location of damaged cable are observed from the fiequency changes of different bending modes, which can be used to initially locate the damaged cable. The damage in either cable or girder can be further localized by the most significant change in curvature of girder. The damage occurred in a cable produces a remarkable change in force of nearby cables, whereas the damage in girder brings little change of cable forces. In addition, a pragmatic approach for localizing the damage in girder or cable is proposed based on a comprehensive utilization of the changes in frequency of vertical bending modes, modal curvature of girder, and force in cables.
基金National Science and Technology Support Program of China(No.2006BAG04B02)
文摘In the background of the construction of Sutong Yangtze River Bridge(short as Sutong Bridge),the cable construction method and techniques of a thousand-meter scale cable-stayed bridge are introduced.Some key construction techniques,such as outspreading cable on deck,installing cable at pylon,pulling and fixing cable at the attachment with decks and cable PE sheath protection are discussed.
基金Natural Science and Engineering Research Council of Canada
文摘The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 90715036)
文摘In this paper,in order to improve the precision of cable force identification of a practical cable-stayed bridge and consider some precision problems of vibration method in surveying the cable force in the engineering application,firstly,three calculation methods for the cable force measurement are analyzed and contrasted;secondly,using the method of finite element numerical simulation and the theory of the error analysis,the effect of both bending rigidity and constraint conditions on simple formula of vibration method is investigated;and the dependence of the precision of cable frequency identification on spectrum resolution,sampling time,and the number of sampling points is studied;Finally,fundamental frequency method,frequency difference method,and peak value method are applied to the cable force calculation of a practical project;and their computational precision and error are contrasted and analyzed.It is observed that it is essential to take into account the effect of every factor on the precision of the cable force identification and make it possible to identify the cable force more accurate by vibration method;and that it simultaneously provides an effective basis for the development of a high-precision equipment.
基金Sponsored by the Natural Science Foundation of China(Grant No.50808063)
文摘The model combined by cable,girder and damper is founded to study the influence of girder vibration on cable damper 's performance of a cable-stayed bridge. The complex mode method and nondimensionalization are used to analyze the relationship between the girder's parameters and the performance of cable-related damper. The results indicate that the performance of cable-related damper will decrease greatly when the girder frequencies are near the frequencies of cable. The smaller absolute displacement of damper's piston caused by the very small vibration phase shift of girder and cable is the physical cause of the negative impact mentioned above.
基金The National Natural Science Foundation ofChina (No.90715036)
文摘Three methods for calculating cable force (analytic method, fitting method and finite element method) are analyzed and compared. The effects of boundary condition, spectrum resolution, sampling time, and number of sampling points on the precision of cable force identification are discussed, and error analysis is conducted. The results of three methods applied to a practical project are significantly less than the design value. Comparatively, the result of finite element method is the closest to the design value. Moreover, their computational precision and error are compared and analyzed. The precision of frequency identification of cables, long cables in particular, is strongly affected by frequency resolution. If the frequency resolution is included in calculating the cable force, the identification error can be reduced greatly.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z234)
文摘To inspect inner wires of the cylindrical cables on a cable-stayed bridge, a new bisected wheel-based cable climbing robot is designed. The simple structure and the moving mode are described and the static features of the robot are analyzed. A cable with a diameter of 139 mm is selected as an example to calculate the design parameters of the robot. For safety energysaving landing in the case of electrical system failure, an electric damper based on back electromotive force and a gas damper with a slider-crank mechanism are introduced to exhaust the energy generated by gravity when the robot is slipping down along the cables. A simplified mathematical model is analyzed and the landing velocity is simulated. For the present design, the robot can climb up a cable with diameters varying from 65 to 205 mm with payloads below 3.5 kg. Several climbing experiments performed on real cables confirm that the proposed robot meets the demands of inspection.
基金Supported by National Natural Science Foundation of China(No.50579047).
文摘Nonlinear vibration can cause serious problems in long span cable-stayed bridges.When the internal resonance threshold is reached between the excitation frequency and natural frequency,large amplitudes occur in the cable.Based on the current situation of lacking corresponding constraint criteria,a model was presented for analyzing the dynamic reliability of coupling oscillation between the cable and tower in a cable-stayed bridge.First of all,in the case of cable sag,the d'Alembert principle is applied to studying the nonlinear dynamic behavior of the structure,and resonance failure interval of parametric oscillation is calculated accordingly.Then the dynamic reliability model is set up using the JC method.An application of this model has been developed for the preliminary design of one cable-stayed bridge located on Hai River in Tianjin,and time histories analysis as well as reliability indexes have been obtained.When frequency ratio between the cable and tower is approaching 1∶2,the reliability index is 0.98,indicating high failure probability.And this is consistent with theoretical derivation and experimental results in reference.This model,which is capable of computing the reliability index of resonance failure,provides theoretical basis for the establishment of corresponding rule.
基金Supported by the National High Technology Research and Development Programene of China (No. 2006AA04Z234) and China Postdoctoral Science Foundation (No. 2.009(061051 ).
文摘In this paper, the climbing obstacle capability of the previous special cable inspection robot ( Model Number: XS1T-1) is analyzed. Static equations are established to analyze the relationships between the external forces and the maximum height of an obstacle. Parameters affecting the obstacle crossing ability are obtained. According to the analysis results, an innovated small volume, simple structure and light weight climbing mechanism is proposed (Model Number: XS1T-2). A simplified kinematics model of the mechanism is established. With two powered wheels, the obstacle crossing ability of the XSIT-2 is improved apparently. For the robot moving without deflection, the relationships of two powered input torques are deduced. The comparison of the simulation results clearly shows that the climbing ability of XS1T-2 is obviously improved, and it can meet the demands of inspection.
文摘As the bridge engineering community sets sails to use longer and longer spans, more and more sophisticated analysis models have to be used in the design process. One of the significant problems represents cable rupture of cable stays. The problem is also addressed in guidelines for cable-stayed bridge design such as PTI (Post-tensioning Institute) Recommendations and EC3 by quasi-static analyses using DAF (dynamic amplification factors) to account dynamic effects, which can be conducted instead ofnsing dynamic analysis. The results show that the value DAF depends on the cable rupture location and on the type and location of the examined state. Dynamic time history analysis is recommended. Some projects examples are highlighted in the paper, where the importance of above mentioned topic has been investigated, following different regulations and approaches. Professional bridge analysis and design sottware solution RM Bridge has been used for all investigations. The application can fulfill all requirements and deliver expected and accurate results. In addition, RM Bridge Sottware also helps engineers as a tool to optimize structure design and increase resistance capacity for each element to ensure the structural safety in service stage.
基金Project(No.20100481432)supported by the China Postdoctoral Science Foundation
文摘Stay cables, the primary load carrying components of cable-stayed bridges (CSBs), are characterised by high flexi-bility which increases with the span of the bridge. This makes stay cables vulnerable to local vibrations which may have significant effects on the dynamic responses of long-span CSBs. Hence, it is essential to account for these effects in the assessment of the dynamics CSBs. In this paper, the dynamic responses of CSBs under vehicular loads are studied using the finite element method (FEM), while the local vibration of stay cables is analyzed using the substructure method. A case study of a cable-stayed steel bridge with a center span of 448 m demonstrates that stay cables undergo large displacements in the primary mode of the whole bridge although, in general, a cable’s local vibrations are not obvious. The road surface roughness has significant effects on the interaction force between the deck and vehicle but little effect on the global response of the bridge. Load impact factors of the main girder and tower are small, and the impact factors of the tension of cables are larger than those of the displacements of girders and towers.