Nucleic acid(DNA and RNA)detection and quantification methods play vital roles in molecular biology.With the development of molecular biology,isothermal amplification of DNA/RNA,as a new molecular biology technology,c...Nucleic acid(DNA and RNA)detection and quantification methods play vital roles in molecular biology.With the development of molecular biology,isothermal amplification of DNA/RNA,as a new molecular biology technology,can be amplified under isothermal condition,it has the advantages of high sensitivity,high specificity,and high efficiency,and has been applied in various fields of biotechnology,including disease diagnosis,pathogen detection,food hygiene and safety detection and so on.This paper introduces the progress of isothermal amplification technology,including rolling circle amplification(RCA),nucleic acid sequence-dependent amplification(NASBA),strand displacement amplification(SDA),loop-mediated isothermal amplification(LAMP),helicase-dependent amplification(HDA),recombinase polymerase amplification(RPA),cross-priming amplification(CPA),and its principle,advantages and disadvantages,and application development are briefly summarized.展开更多
5-Hydroxymethylcytosine(5 hmC),an intermediate product of DNA demethylation,is important for the regulation of gene expression during development and even tumorigenesis.The challenges associated with determination of ...5-Hydroxymethylcytosine(5 hmC),an intermediate product of DNA demethylation,is important for the regulation of gene expression during development and even tumorigenesis.The challenges associated with determination of 5 hm C level include its extremely low abundance and high structural similarity with other cytosine derivatives,which resulted in sophisticated treatment with large amount of sample input.Herein,we developed a primer-initiated strand displacement amplification(PISDA)strategy to quantify the global 5 hm C in genomic DNA from mammalian tissues with high sensitivity/selectivity,low input and simple operation.This sensitive fluorescence method is based on 5 hmC-specific glucosylation,primer ligation and DNA amplification.After the primer was labeled on 5 hm C site,DNA polymerase and nicking enzyme will repeatedly act on each primer,causing a significant increase of fluorescence signal to magnify the minor difference of 5 hm C content from other cytosine derivatives.This method enables highly sensitive analysis of 5 hm C with a detection limit of 0.003%in DNA(13.6 fmol,S/N=3)from sample input of only 150 ng,which takes less than 15 min for determination.Further determination of 5 hmC in different tissues not only confirms the widespread presence of 5 hmC but also indicates its significant variation in different tissues and ages.Importantly,this PISDA strategy exhibits distinct advantages of bisulfite-free treatment,mild conditions and simple operation without the involvement of either expensive equipment or large amount of DNA sample.This method can be easily performed in almost all research and medical laboratories,and would provide a promising prospect to detect global 5 hmC in mammalian tissues.展开更多
Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus (HIV) infection diagnosis. Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 ...Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus (HIV) infection diagnosis. Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 was established based upon nicking-assisted strand displacement amplification (SDA) and triplex DNA. In the presence of target dsDNA, nicking-assisted SDA process generated a lot of ssDNA, which hybridized with molecular beacon to produce signal. The fluorescence intensity was proportional to the concentration of target dsDNA within the range from 5 to 1000 pmol/L, with a detection limit of 1.4 pmol/L. Moreover, it successfully distinguished target dsDNA from the nucleic acid extractive of human blood. Thus this method has the merit of high sensitivity, and it is suitable for sequence-specific recognition of target dsDNA in complex matrices, which made it a potential application in diagnosis of acquired immunodeflciency syndrome (AIDS) in the future.展开更多
Herein,we propose a novel photoelectrochemical(PEC) biosensor for dual microRNAs(miRNAs) highly sensitive and simultaneous biosensing based on strand displaced amplification(SDA) reaction.The recognition of HmiR-21 an...Herein,we propose a novel photoelectrochemical(PEC) biosensor for dual microRNAs(miRNAs) highly sensitive and simultaneous biosensing based on strand displaced amplification(SDA) reaction.The recognition of HmiR-21 and Hlet-7 a by microRNA-21 and let-7 a leads to their change in hairpin structures,subsequently initiating the immobilization of abundant CdS quantum dots(CdS QD s) and methylene blue(MB) based on SDA reaction.The immobilized CdS QDs and MB produce both high PEC currents under430 nm light and 627 nm light illumination,respectively,and the generated PEC currents are closely relied on target miRNAs amounts.Thus,highly sensitive and simultaneous detection of microRNA-21 and let-7 a was readily achieved with detection limit at 6.6 fmol/L and 15.4 fmol/L based on 3σ,respectively.Further,this PEC biosensor was applied in simultaneous analysis of miRNA-21 and let-7 a in breast cancer patient’s serum with acceptable results.We expect this biosensor will find more useful application in diagnosis of miRNA-related diseases.展开更多
基金supported by grants from Jiangsu Higher Education Institution Innovative Research Team for Science and Technology(2021),the Key Technology Program of Suzhou People’s Livelihood Technology Projects(Grant Nos.SKY2021029,SZS2020311)the Open Project of Jiangsu Biobank of Clinical Resources(TC2021B009)the Qing-Lan Project of Jiangsu Province in China(2021,2022).
文摘Nucleic acid(DNA and RNA)detection and quantification methods play vital roles in molecular biology.With the development of molecular biology,isothermal amplification of DNA/RNA,as a new molecular biology technology,can be amplified under isothermal condition,it has the advantages of high sensitivity,high specificity,and high efficiency,and has been applied in various fields of biotechnology,including disease diagnosis,pathogen detection,food hygiene and safety detection and so on.This paper introduces the progress of isothermal amplification technology,including rolling circle amplification(RCA),nucleic acid sequence-dependent amplification(NASBA),strand displacement amplification(SDA),loop-mediated isothermal amplification(LAMP),helicase-dependent amplification(HDA),recombinase polymerase amplification(RPA),cross-priming amplification(CPA),and its principle,advantages and disadvantages,and application development are briefly summarized.
基金supported by the Scientific Technology Project of Shenzhen City(Nos.JCYJ20200109142410170,JCYJ20210324120601004 and JCYJ20210324124003008)the National Natural Science Foundations of China(Nos.21775169,21801259 and 21974153)+2 种基金the Scientific Technology Project of Guangzhou City(No.202103000003)the Guangdong Natural Science Foundation(No.2019A1515010587)the Guangdong Science and Technology Plan Project(No.2020B1212060077)。
文摘5-Hydroxymethylcytosine(5 hmC),an intermediate product of DNA demethylation,is important for the regulation of gene expression during development and even tumorigenesis.The challenges associated with determination of 5 hm C level include its extremely low abundance and high structural similarity with other cytosine derivatives,which resulted in sophisticated treatment with large amount of sample input.Herein,we developed a primer-initiated strand displacement amplification(PISDA)strategy to quantify the global 5 hm C in genomic DNA from mammalian tissues with high sensitivity/selectivity,low input and simple operation.This sensitive fluorescence method is based on 5 hmC-specific glucosylation,primer ligation and DNA amplification.After the primer was labeled on 5 hm C site,DNA polymerase and nicking enzyme will repeatedly act on each primer,causing a significant increase of fluorescence signal to magnify the minor difference of 5 hm C content from other cytosine derivatives.This method enables highly sensitive analysis of 5 hm C with a detection limit of 0.003%in DNA(13.6 fmol,S/N=3)from sample input of only 150 ng,which takes less than 15 min for determination.Further determination of 5 hmC in different tissues not only confirms the widespread presence of 5 hmC but also indicates its significant variation in different tissues and ages.Importantly,this PISDA strategy exhibits distinct advantages of bisulfite-free treatment,mild conditions and simple operation without the involvement of either expensive equipment or large amount of DNA sample.This method can be easily performed in almost all research and medical laboratories,and would provide a promising prospect to detect global 5 hmC in mammalian tissues.
基金supported by the National Natural Science Foundation of China(21375153)
文摘Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus (HIV) infection diagnosis. Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 was established based upon nicking-assisted strand displacement amplification (SDA) and triplex DNA. In the presence of target dsDNA, nicking-assisted SDA process generated a lot of ssDNA, which hybridized with molecular beacon to produce signal. The fluorescence intensity was proportional to the concentration of target dsDNA within the range from 5 to 1000 pmol/L, with a detection limit of 1.4 pmol/L. Moreover, it successfully distinguished target dsDNA from the nucleic acid extractive of human blood. Thus this method has the merit of high sensitivity, and it is suitable for sequence-specific recognition of target dsDNA in complex matrices, which made it a potential application in diagnosis of acquired immunodeflciency syndrome (AIDS) in the future.
基金funded by the National Natural Science Foundation of China (Nos.21605093 and 21775082)the Shandong Province Higher Educational Program for Young Innovation Talents+1 种基金the Special Foundation for Distinguished Taishan Scholar of Shandong Province (No.ts201511052)the Major Program of Shandong Province Natural Science Foundation (No. ZR2018ZC0127)。
文摘Herein,we propose a novel photoelectrochemical(PEC) biosensor for dual microRNAs(miRNAs) highly sensitive and simultaneous biosensing based on strand displaced amplification(SDA) reaction.The recognition of HmiR-21 and Hlet-7 a by microRNA-21 and let-7 a leads to their change in hairpin structures,subsequently initiating the immobilization of abundant CdS quantum dots(CdS QD s) and methylene blue(MB) based on SDA reaction.The immobilized CdS QDs and MB produce both high PEC currents under430 nm light and 627 nm light illumination,respectively,and the generated PEC currents are closely relied on target miRNAs amounts.Thus,highly sensitive and simultaneous detection of microRNA-21 and let-7 a was readily achieved with detection limit at 6.6 fmol/L and 15.4 fmol/L based on 3σ,respectively.Further,this PEC biosensor was applied in simultaneous analysis of miRNA-21 and let-7 a in breast cancer patient’s serum with acceptable results.We expect this biosensor will find more useful application in diagnosis of miRNA-related diseases.