Research performed during the past decade revealed an important role of symmetry energy in the equation of state(EOS)of strange quark matter(SQM).By introducing an isospin-dependent term into the quark mass scaling,th...Research performed during the past decade revealed an important role of symmetry energy in the equation of state(EOS)of strange quark matter(SQM).By introducing an isospin-dependent term into the quark mass scaling,the SQM stability window in the equivparticle model was studied.The results show that a sufficiently strong isospin dependence C_(I)can significantly widen the SQM region of absolute stability,yielding results that simultaneously satisfy the constraints of the astrophysical observations of PSR J1614-2230 with 1.928±0.017 Mand tidal deformability 70≤Λ_(1:4)≤580 measured in the event GW170817.With increasing C_(I),the difference between the u,d,and s quark fractions for the SQM inβ-equilibrium becomes inconspicuous for C>0,leading to small isospin asymmetryδ,and further resulting in similar EOS and structures of strange quark stars(SQSs).Moreover,unlike the behavior of the maximum mass of ud QSs,which varies with C_(I)depending on the sign of the parameter C,the maximum mass of the SQSs decreases monotonously with increasing CI.展开更多
The bulk viscosity of interacting strange quark matter in a strong external magnetic field B m with a real equation of state is investigated.It is found that interquark interactions can significantly increase the bulk...The bulk viscosity of interacting strange quark matter in a strong external magnetic field B m with a real equation of state is investigated.It is found that interquark interactions can significantly increase the bulk viscosity,and the magnetic field B_(m) can cause irregular oscillations in both components of the bulk viscosity,ξ||(parallel to B_(m))and ξ⊥(perpendicular to B_(m)).A comparison with non-interacting strange quark matter reveals that when B_(m) is sufficiently large,ξ⊥is more affected by interactions than ξ||.Additionally,the quasi-oscillation of the bulk viscosity with changes in density may facilitate the for-mation of magnetic domains.Moreover,the resulting r-mode instability windows are in good agreement with observational data for compact stars in low-mass X-ray binaries.Specifically,the r-mode instability window for interacting strange quark matter in high magnetic fields has a minimum rotation frequency exceeding 1050 Hz,which may explain the observed very high spin frequency of a pulsar with V=1122 Hz.展开更多
Considering the effect of one-gluon-exchange interaction between quarks,the color-flavor locked strange quark matter and strange stars are investigated in a new quark mass density-dependent model.It is found that the ...Considering the effect of one-gluon-exchange interaction between quarks,the color-flavor locked strange quark matter and strange stars are investigated in a new quark mass density-dependent model.It is found that the color-flavor locked strange quark matter can be more stable if the one-gluon-exchange effect is included.The lower density behavior of the sound velocity in this model is different from the previous results.Moreover,the new equation of state leads to a heavier acceptable maximum mass,supporting the recent observation of a compact star mass as large as about 2 times the solar mass.展开更多
We investigate the bulk viscosity of strange quark matter in the framework of the equivparticle model,where analytical formulae are obtained for certain temperature ranges,which can be readily applied to those with va...We investigate the bulk viscosity of strange quark matter in the framework of the equivparticle model,where analytical formulae are obtained for certain temperature ranges,which can be readily applied to those with various quark mass scalings.In the case of adopting a quark mass scaling with both linear confinement and perturbative interactions,the obtained bulk viscosity increases by 1-2 orders of magnitude compared with those in bag model scenarios.Such an enhancement is mainly due to the large quark equivalent masses adopted in the equivparticle model,which are essentially attributed to the strong interquark interactions and are related to the dynamical chiral symmetry breaki ng.Due to the high bulk viscosity,the predicted damping time of oscillatio ns for a can on ical 1.4 M⊙ strange star is less than one millisecond,which is shorter than previous findings.Consequently,the obtained r-mode instability window for the canonical strange stars well accommodates the observational frequencies and temperatures for pulsars in low-mass X-ray binaries(LMXBs).展开更多
The properties of strange quark matter and the structures of(proto-)strange stars are studied within the framework of a baryon density-dependent quark mass model,where a novel quark mass scaling and self-consistent th...The properties of strange quark matter and the structures of(proto-)strange stars are studied within the framework of a baryon density-dependent quark mass model,where a novel quark mass scaling and self-consistent thermodynamic treatment are adopted.Our results indicate that the perturbative interaction has a significant impact on the properties of strange quark matter.It is determined that the energy per baryon increases with temperature,while the free energy decreases and eventually becomes negative.At fixed temperatures,the pressure at the minimum free energy per baryon is zero,suggesting that the thermodynamic self-consistency is preserved.Furthermore,the sound velocity v in quark matter approaches the extreme relativistic limit(c/√3)as the density increases.By increasing the strengths of the confinement parameter D and perturbation parameter C,the tendency for v to approach the extreme relativistic limit at high density is slightly weakened.For(proto-)strange stars,the novel quark mass scaling can accommodate massive proto-strange stars with their maximum mass surpassing twice the solar mass by considering the isentropic stages along the star evolution line,where the entropy per baryon of the star matter is set to be 0.5 and 1 with the lepton fraction Y_(l)=0.4.展开更多
According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obta...According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obtained either by a simple bag model with artificially assigned sound velocity or by employing interacting strange quark matter(SQM)depicted by simple reparameterization and rescaling.In this study,we investigate GW echoes with EOSs for SQM in the framework of the equivparticle model with density-dependent quark masses and pairing effects.We conclude that strange quark stars(SQSs)can be sufficiently compact to possess a photon sphere capable of generating GW echoes with frequencies in the range of approximately 20 kHz.However,SQSs cannot account for the observed 72 Hz signal in GW170817 event.Furthermore,we determined that quark-pairing effects play a crucial role in enabling SQSs to satisfy the necessary conditions for producing these types of echoes.展开更多
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the g...Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We lind that if the current mass of strange quark m, is smmall, the strange quark matter remains stable unless the baryon density is very high. If m, is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12005005 and 11875052)the National SKA Program of China(No.2020SKA0120300)+1 种基金the Hunan Provincial Nature Science Foundation of China(No.2021JJ40188)the Scientific Research Start-up Fund of Talent Introduction of Suqian University(No.Xiao2022XRC061).
文摘Research performed during the past decade revealed an important role of symmetry energy in the equation of state(EOS)of strange quark matter(SQM).By introducing an isospin-dependent term into the quark mass scaling,the SQM stability window in the equivparticle model was studied.The results show that a sufficiently strong isospin dependence C_(I)can significantly widen the SQM region of absolute stability,yielding results that simultaneously satisfy the constraints of the astrophysical observations of PSR J1614-2230 with 1.928±0.017 Mand tidal deformability 70≤Λ_(1:4)≤580 measured in the event GW170817.With increasing C_(I),the difference between the u,d,and s quark fractions for the SQM inβ-equilibrium becomes inconspicuous for C>0,leading to small isospin asymmetryδ,and further resulting in similar EOS and structures of strange quark stars(SQSs).Moreover,unlike the behavior of the maximum mass of ud QSs,which varies with C_(I)depending on the sign of the parameter C,the maximum mass of the SQSs decreases monotonously with increasing CI.
基金This work was supported by the National Natural Science Foundation of China(Nos.12005005,11947098)Key Research Projects of Universities in Henan Province(No.20A140003)。
文摘The bulk viscosity of interacting strange quark matter in a strong external magnetic field B m with a real equation of state is investigated.It is found that interquark interactions can significantly increase the bulk viscosity,and the magnetic field B_(m) can cause irregular oscillations in both components of the bulk viscosity,ξ||(parallel to B_(m))and ξ⊥(perpendicular to B_(m)).A comparison with non-interacting strange quark matter reveals that when B_(m) is sufficiently large,ξ⊥is more affected by interactions than ξ||.Additionally,the quasi-oscillation of the bulk viscosity with changes in density may facilitate the for-mation of magnetic domains.Moreover,the resulting r-mode instability windows are in good agreement with observational data for compact stars in low-mass X-ray binaries.Specifically,the r-mode instability window for interacting strange quark matter in high magnetic fields has a minimum rotation frequency exceeding 1050 Hz,which may explain the observed very high spin frequency of a pulsar with V=1122 Hz.
基金support from the National Natural Science Foundation of China (Grant Nos.11135011 and 11045006)the Key Project of Chinese Academy of Sciences (No.Y12A0A0012)
文摘Considering the effect of one-gluon-exchange interaction between quarks,the color-flavor locked strange quark matter and strange stars are investigated in a new quark mass density-dependent model.It is found that the color-flavor locked strange quark matter can be more stable if the one-gluon-exchange effect is included.The lower density behavior of the sound velocity in this model is different from the previous results.Moreover,the new equation of state leads to a heavier acceptable maximum mass,supporting the recent observation of a compact star mass as large as about 2 times the solar mass.
基金Supported by National Natural Science Foundation of China(12005005,11947098,11705163,11875052,No.11575190)key research projects of universities in Henan province(20A140003)。
文摘We investigate the bulk viscosity of strange quark matter in the framework of the equivparticle model,where analytical formulae are obtained for certain temperature ranges,which can be readily applied to those with various quark mass scalings.In the case of adopting a quark mass scaling with both linear confinement and perturbative interactions,the obtained bulk viscosity increases by 1-2 orders of magnitude compared with those in bag model scenarios.Such an enhancement is mainly due to the large quark equivalent masses adopted in the equivparticle model,which are essentially attributed to the strong interquark interactions and are related to the dynamical chiral symmetry breaki ng.Due to the high bulk viscosity,the predicted damping time of oscillatio ns for a can on ical 1.4 M⊙ strange star is less than one millisecond,which is shorter than previous findings.Consequently,the obtained r-mode instability window for the canonical strange stars well accommodates the observational frequencies and temperatures for pulsars in low-mass X-ray binaries(LMXBs).
基金Supported by the National Natural Science Foundation of China(11875052,11575190,11135011)。
文摘The properties of strange quark matter and the structures of(proto-)strange stars are studied within the framework of a baryon density-dependent quark mass model,where a novel quark mass scaling and self-consistent thermodynamic treatment are adopted.Our results indicate that the perturbative interaction has a significant impact on the properties of strange quark matter.It is determined that the energy per baryon increases with temperature,while the free energy decreases and eventually becomes negative.At fixed temperatures,the pressure at the minimum free energy per baryon is zero,suggesting that the thermodynamic self-consistency is preserved.Furthermore,the sound velocity v in quark matter approaches the extreme relativistic limit(c/√3)as the density increases.By increasing the strengths of the confinement parameter D and perturbation parameter C,the tendency for v to approach the extreme relativistic limit at high density is slightly weakened.For(proto-)strange stars,the novel quark mass scaling can accommodate massive proto-strange stars with their maximum mass surpassing twice the solar mass by considering the isentropic stages along the star evolution line,where the entropy per baryon of the star matter is set to be 0.5 and 1 with the lepton fraction Y_(l)=0.4.
基金This work was supported by the National Natural Science Foundation of China(Nos.12005005,12205093,12275234,and 11875052)the National SKA Program of China(No.2020SKA0120300)+3 种基金the Hunan Provincial Nature Science Foundation of China(No.2021JJ40188)the Scientific Research Start-up Fund of Talent Introduction of Suqian University(No.Xiao2022XRC061)Suqian Key Laboratory of High Performance Composite Materials(M202109)Suqian University Multi functional Material R&D Platform(2021pt04).
文摘According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obtained either by a simple bag model with artificially assigned sound velocity or by employing interacting strange quark matter(SQM)depicted by simple reparameterization and rescaling.In this study,we investigate GW echoes with EOSs for SQM in the framework of the equivparticle model with density-dependent quark masses and pairing effects.We conclude that strange quark stars(SQSs)can be sufficiently compact to possess a photon sphere capable of generating GW echoes with frequencies in the range of approximately 20 kHz.However,SQSs cannot account for the observed 72 Hz signal in GW170817 event.Furthermore,we determined that quark-pairing effects play a crucial role in enabling SQSs to satisfy the necessary conditions for producing these types of echoes.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405012
文摘Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We lind that if the current mass of strange quark m, is smmall, the strange quark matter remains stable unless the baryon density is very high. If m, is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.