Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing t...In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.展开更多
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a...To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.展开更多
Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the work...Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the working accuracy of SINS,but in self-alignment,the two indexes are often contradictory.In view of the limitations of conventional data processing algorithms,a novel method of compass alignment based on stored data and repeated navigation calculation for SINS is proposed.By means of data storage,the same data is used in different stages of the initial alignment,which is beneficial to shorten the initial alignment time and improve the alignment accuracy.In order to verify the correctness of the compass algorithm based on stored data and repeated navigation calculation,the simulation experiment was done.In summary,when the computer performance is sufficiently high,the compass alignment method based on the stored data and the forward and reverse navigation calculation can effectively improve the alignment speed and improve the alignment accuracy.展开更多
The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phas...The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
Transfer alignment is an effective alignment method for the strapdown inertial navigation system (SINS) of airborne weapon systems. The traditional transfer alignment methods for large misalignment angles alignment ...Transfer alignment is an effective alignment method for the strapdown inertial navigation system (SINS) of airborne weapon systems. The traditional transfer alignment methods for large misalignment angles alignment use nonlinear transfer align- ment models and incorporate nonlinear filtering. A rapid transfer alignment method with linear models and linear filtering for ar- bitrary misalignment angles is presented. Through the attitude quaternion decomposition, the purpose of transfer alignment is converted to estimate a constant quaternion. Employing special manipulations on measurement equation, velocity and attitude linear measurement equations are derived. Then the linear trans- fer alignment model for arbitrary misalignment angles is built. An adaptive Kalman filter is developed to handle modeling errors of the measurement noise statistics. Simulation results show feasibili- ty and effectiveness of the proposed method, which provides an alternative rapid transfer alignment method for airborne weapons.展开更多
An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastie model. The adaptive filter has six states with a time variable transition matrix. ...An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastie model. The adaptive filter has six states with a time variable transition matrix. When the system is in the non-acceleration mode, the accelerometer measurements of the gravity and the compass measurements of the heading have observability and yield good eslimates of the states. When the system is in the high dynamic mode and the bias has converged to an aceurate estimate, the attitude caleulation will be maintained for a long interval of time. The adaptive filter tunes its gain automatically based on the system dynamics sensed by the accelerometers to yield optimal performance,展开更多
The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will l...The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.展开更多
This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the ...This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the weak point on position estimation by the merits of GPS and INS.In general,extended Kalman filter(EKF)has been widely used in order to combine GPS with INS.However,UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear,irregular distribution errors.In this paper,the accuracy of UPF is proved through the simulation experiment,using the virtual-data needed for the test.展开更多
Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-async...Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification.展开更多
This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates...This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.展开更多
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat...The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.展开更多
An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for t...An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.展开更多
The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The meas...The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and mo...In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment. The UKF has good performance in case of small initial misalignment.展开更多
A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about th...A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.展开更多
An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method ac...An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method achieves the alignment by virtue of a cascade of low-pass FIR filters, which attenuate the disturbing acceleration and maintain the gravity vector. The aligning time rests with the orders of the FIR filter group, and the method is suitable for large initial misalignment case. An alignment scheme comprising a coarse phase by the IFBA method and a fine phase by a Kalman filter is presented. Both vehicle-based and ship-based alignment experiments were carried out. The results show that the proposed scheme converges much faster than the traditional method at no cost of precision and also works well under any large initial misalignment.展开更多
In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In th...In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.展开更多
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
文摘In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.
基金Project(60604011) supported by the National Natural Science Foundation of China
文摘To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.
基金This work was supported by the National Nature Science Foundation of China(Grant No.5200110367)Natural Science Foundation of Jiangsu Province(Grant No.SBK2020043219)+1 种基金Scientific Research Foundation of the Higher Education Institutions of Jiangsu Province(Grant No.19KJB510052)NUPTSF(Grant No.NY219023).
文摘Initial alignment is the precondition for strapdown inertial navigation system(SINS)to navigate.Its two important indexes are accuracy and rapidity,the accuracy of the initial alignment is directly related to the working accuracy of SINS,but in self-alignment,the two indexes are often contradictory.In view of the limitations of conventional data processing algorithms,a novel method of compass alignment based on stored data and repeated navigation calculation for SINS is proposed.By means of data storage,the same data is used in different stages of the initial alignment,which is beneficial to shorten the initial alignment time and improve the alignment accuracy.In order to verify the correctness of the compass algorithm based on stored data and repeated navigation calculation,the simulation experiment was done.In summary,when the computer performance is sufficiently high,the compass alignment method based on the stored data and the forward and reverse navigation calculation can effectively improve the alignment speed and improve the alignment accuracy.
文摘The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金supported by the National Natural Science Foundation of China(61233005)
文摘Transfer alignment is an effective alignment method for the strapdown inertial navigation system (SINS) of airborne weapon systems. The traditional transfer alignment methods for large misalignment angles alignment use nonlinear transfer align- ment models and incorporate nonlinear filtering. A rapid transfer alignment method with linear models and linear filtering for ar- bitrary misalignment angles is presented. Through the attitude quaternion decomposition, the purpose of transfer alignment is converted to estimate a constant quaternion. Employing special manipulations on measurement equation, velocity and attitude linear measurement equations are derived. Then the linear trans- fer alignment model for arbitrary misalignment angles is built. An adaptive Kalman filter is developed to handle modeling errors of the measurement noise statistics. Simulation results show feasibili- ty and effectiveness of the proposed method, which provides an alternative rapid transfer alignment method for airborne weapons.
文摘An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastie model. The adaptive filter has six states with a time variable transition matrix. When the system is in the non-acceleration mode, the accelerometer measurements of the gravity and the compass measurements of the heading have observability and yield good eslimates of the states. When the system is in the high dynamic mode and the bias has converged to an aceurate estimate, the attitude caleulation will be maintained for a long interval of time. The adaptive filter tunes its gain automatically based on the system dynamics sensed by the accelerometers to yield optimal performance,
基金Project supported in part by Program for New Century Excellent Talents in University (NCET) of China
文摘The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.
基金The MKE(the Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)
文摘This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the weak point on position estimation by the merits of GPS and INS.In general,extended Kalman filter(EKF)has been widely used in order to combine GPS with INS.However,UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear,irregular distribution errors.In this paper,the accuracy of UPF is proved through the simulation experiment,using the virtual-data needed for the test.
基金supported by the National Natural Science Foundation of China(61273333)
文摘Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification.
基金Aeronautical Science Foundation of China(20080852011,20070852009)
文摘This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system (SIAHRS) , which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit (IMU) , called damping attitudes, with those from the conventional IMU. As vehicle' s acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle' s motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally,the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.
基金supported by the National Natural Science Foundation of China(41174162).
文摘The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.
文摘An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.
文摘The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
文摘In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment. The UKF has good performance in case of small initial misalignment.
文摘A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.
基金the National Natural Science Foundation of China (60604011)
文摘An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method achieves the alignment by virtue of a cascade of low-pass FIR filters, which attenuate the disturbing acceleration and maintain the gravity vector. The aligning time rests with the orders of the FIR filter group, and the method is suitable for large initial misalignment case. An alignment scheme comprising a coarse phase by the IFBA method and a fine phase by a Kalman filter is presented. Both vehicle-based and ship-based alignment experiments were carried out. The results show that the proposed scheme converges much faster than the traditional method at no cost of precision and also works well under any large initial misalignment.
基金supported by the Photoelectric Control Technology Project of National Defense Science and Technology Key Laboratory of China(20120224006)
文摘In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.