This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissio...This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops.展开更多
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w...This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect.展开更多
An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines(TCMs). However, the current quality standard research lacks top-level design and systematic ...An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines(TCMs). However, the current quality standard research lacks top-level design and systematic design,mostly based on specific technologies or evaluation methods. To resolve the challenges and questions of quality control of TCMs, a brand-new quality standard system, named "iVarious", was proposed. The system comprises eight elements in a modular format. Meaning of every element was specifically illustrated via corresponding research instances. Furthermore, frankincense study was taken as an example for demonstrating standards and research process, based on the "i Various" system. This system highlighted a holistic strategy for effectiveness,security, integrity and systematization of quality and safety control standards of TCMs. The establishment of"i Various" integrates multi-disciplinary technologies and progressive methods, basis elements and key points of standard construction. The system provides a novel idea and technological demonstration for regulation establishment of TCMs quality standards.展开更多
The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The tradi...The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The traditional communication architecture of IoV will easily cause significant delay and low Packet Delivery Ratio(PDR) for disseminating critical security beacons under the condition of high-speed movement, distance-varying communication, and mixed traffic. This paper proposes a novel bandwidth-link resources cooperative allocation strategy to achieve better communication performance under the road conditions of intelligent transportation systems(ITS). Firstly, in traffic scenarios, based on the characteristic to predict the relative position of the mobile transceivers, a strategy is developed to cooperate on the mobile cellular network and the Dedicated Short-Range Communications(DSRC). Secondly, by adopting the general network simulator NS3, the dedicated mobile channel models that are suitable for the data interaction of ITS, is applied to confirm the feasibility and reliability of the strategy. Finally, by the simulation, comparison, and analysis of some critical performance parame-ters, we conclude that the novel strategy does not only reduce the system delay but also improve the other communication performance indicators, such as the PDR and communication capacity.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio...As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.展开更多
In recent years,the research focus in insurance risk theory has shifted towards multi-type mixed dividend strategies.However,the practical factors and constraints in financial market transactions,such as interest rate...In recent years,the research focus in insurance risk theory has shifted towards multi-type mixed dividend strategies.However,the practical factors and constraints in financial market transactions,such as interest rates,tax rates,and transaction fees,inevitably impact these strategies.By incorporating appropriate constraints,a multi-type mixed strategy can better simulate real-world transactions.Following the approach of Liu et al.[28],we examine a classical compound Poisson risk model that incorporates the constraints of constant interest rates and a periodic-threshold mixed dividend strategy.In this model,the surplus process of insurance companies is influenced by several factors.These factors include constant interest rates,continuously distributed dividends within intervals(threshold dividend strategy),and dividends at discrete time points(periodic dividend strategy).We derive the piecewise integro-differential equations(IDEs)that describe the expected present value of dividends(EPVDs)until ruin time and the Gerber-Shiu expected discounted penalty function.Furthermore,we provide explicit solutions to these IDEs using an alternative method based on the inverse Laplace transform combined with the Dickson-Hipp operator.This enables us to obtain explicit expressions for the dividend and Gerber-Shiu functions.Additionally,we present examples to illustrate the application of our results.展开更多
Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,ar...Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ...The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.展开更多
This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals ...This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals and observation equations.Firstly,to reduce the complexity of solving the meanfield game,a limiting control problem is introduced.By virtue of the decomposition approach,an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique,a decentralized control strategy and a consistency condition system are derived,and the related solvability is also addressed.Secondly,we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally,we work out a financial problem with some numerical simulations.展开更多
Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study perfor...Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study performed qualitative analysis of fault zones and proposed a zoning method to assess the landslide susceptibility in Chengkou County, Chongqing Municipality, China. The region within a distance of 1 km from the faults was designated as sub-zone A, while the remaining area was labeled as sub-zone B. To accomplish the assessment, a dataset comprising 388 historical landslides and 388 non-landslide points was used to train the random forest model. 10-fold cross-validation was utilized to select the training and testing datasets for the model. The results of the models were analyzed and discussed, with a focus on model performance and prediction uncertainty. By implementing the proposed division strategy based on fault zone, the accuracy, precision, recall, F-score, and AUC of both two sub-zones surpassed those of the whole region. In comparison to the results obtained for the whole region, sub-zone B exhibited an increase in AUC by 6.15%, while sub-zone A demonstrated a corresponding increase of 1.66%. Moreover, the results of 100 random realizations indicated that the division strategy has little effect on the prediction uncertainty. This study introduces a novel approach to enhance the prediction accuracy of the landslide susceptibility mapping model in areas with multiple fault zones.展开更多
Since the emergence of COVID-19 in 2020,the threaten of emerging infectious diseases(EIDs)has attracted great attentions and echoes either from professional institutions,governments or public.The conceptualization of...Since the emergence of COVID-19 in 2020,the threaten of emerging infectious diseases(EIDs)has attracted great attentions and echoes either from professional institutions,governments or public.The conceptualization of“Disease X”,which covers more than 30 families of viruses,has strongly actuated various resources into the development of medical countermeasures and the research across all families of pathogens.On the other hand,the endemic even pandemic old communicable diseases,such as tuberculosis(TB),malaria,HIV/AIDS,etc.,should never be neglected.Globally in 2023,the estimated TB cases was 10.8 million and the estimated deaths was 1.25 million according to the Global Tuberculosis Report 2024 by World Health Organization(WHO)[1].The most affected countries are India,Indonesia,China,the Philippines,Pakistan,Nigeria,Bangladesh,and the Democratic Republic of the Congo.展开更多
With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,...It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.展开更多
In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair rec...In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.展开更多
To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to trans...To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to transform renewable energy resources into primary power sources.The large-scale integration of high proportions of renewable energy sources and power electronic devices will dramatically change the operational mechanisms and control strategies of power systems.Existing wind and solar converters mostly adopt the grid-following control mode,which leads to significant challenges in system security and stability as it is insufficient to support the frequency and voltage of the grid.On the other hand,grid-forming control technology(GFM)can provide voltage and frequency support for the system,and thus becomes an effective measure to improve the inertia and damping characteristics of power systems.This paper illustrates the principles,control strategies,equipment types,application scenarios,and project implementation of grid-forming technology.The simulation and analysis based on a renewable-dominated real new-type power system show that GFM can significantly enhance the frequency and voltage support capacity of the power system,improve renewable energy accommodation capacity and grid transmission capacity under weak grid conditions,and play an important role in enhancing the stability and power supply reliability of renewable-dominated new-type power systems.展开更多
BACKGROUND The incidence of rectal cancer is increasing worldwide,and surgery remains the primary treatment modality.With the advent of total mesorectal excision(TME)technique,the probability of tumor recurrence post-...BACKGROUND The incidence of rectal cancer is increasing worldwide,and surgery remains the primary treatment modality.With the advent of total mesorectal excision(TME)technique,the probability of tumor recurrence post-surgery has significantly decreased.Surgeons'focus has gradually shifted towards minimizing the impact of surgery on urinary and sexual functions.Among these concerns,the optimal dissection of the rectal lateral ligaments and preservation of the pelvic floor neuro-vascular bundle have become critical.To explore the optimal surgical technique for TME and establish a standardized surgical protocol to minimize the impact on urinary and sexual functions,we propose the eight-zone dissection strategy for pelvic floor anatomy.AIM To compare the differences in surgical specimen integrity and postoperative quality of life satisfaction between the traditional pelvic floor dissection strategy and the innovative eight-zone dissection strategy.METHODS We analyzed the perioperative data of patients who underwent laparoscopic radical resection of rectal cancer at Qilu Hospital of Shandong University between January 1,2021 and December 1,2023.This study included a total of 218 patients undergoing laparoscopic radical surgery for rectal cancer,among whom 109 patients underwent traditional pelvic floor dissection strategy,and 109 patients received the eight-zone dissection strategy.RESULTS There were no significant differences in general characteristics between the two groups.Patients in the eight-zone dissection group had higher postoperative specimen integrity(88.1%vs 78.0%,P=0.047).At the 3-month followup,patients in the eight-zone surgery group had better scores in urinary issues(6.8±3.3 vs 5.3±2.5,P=0.045)and male sexual desire(2.2±0.6 vs 2.5±0.5,P=0.047)compared to the traditional surgery strategy group.CONCLUSION This study demonstrates that the eight-zone dissection strategy for laparoscopic lateral ligament dissection of rectal cancer is safe and effective.Compared with the traditional pelvic floor dissection strategy,this approach can reduce the risk of nerve injury and minimize the impact on urinary and sexual functions.Therefore,we recommend the clinical application of this strategy to better serve patients with rectal cancer.展开更多
As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilienc...As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.52172314)the Natural Science Foundation of Liaoning Province,China(Grant No.2022-MS-150)the Special Funding Project of Taishan Scholar Engineering.
文摘This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops.
基金the Key Research&Development Program of Xinjiang(Grant Number 2022B01003).
文摘This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect.
基金financial support from National Major Scientific and Technological Special Project for "Significant New Drugs Development" (2014ZX09304307-002)Youth Development Research Foundation of NIFDC (2013WA8)the National Natural Foundation of China (81303214)
文摘An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines(TCMs). However, the current quality standard research lacks top-level design and systematic design,mostly based on specific technologies or evaluation methods. To resolve the challenges and questions of quality control of TCMs, a brand-new quality standard system, named "iVarious", was proposed. The system comprises eight elements in a modular format. Meaning of every element was specifically illustrated via corresponding research instances. Furthermore, frankincense study was taken as an example for demonstrating standards and research process, based on the "i Various" system. This system highlighted a holistic strategy for effectiveness,security, integrity and systematization of quality and safety control standards of TCMs. The establishment of"i Various" integrates multi-disciplinary technologies and progressive methods, basis elements and key points of standard construction. The system provides a novel idea and technological demonstration for regulation establishment of TCMs quality standards.
基金supported in part by the National Natural Science Foundation of China (No.61573171)the Major Information Projects of State Ministry of Transportation (No.2013-364-836-900)
文摘The bandwidth resources allocation strategies of the existing Internet of Vehicles(IoV) are mainly base on the communication architecture of the traditional 802.11 x in the wireless local area network(WLAN). The traditional communication architecture of IoV will easily cause significant delay and low Packet Delivery Ratio(PDR) for disseminating critical security beacons under the condition of high-speed movement, distance-varying communication, and mixed traffic. This paper proposes a novel bandwidth-link resources cooperative allocation strategy to achieve better communication performance under the road conditions of intelligent transportation systems(ITS). Firstly, in traffic scenarios, based on the characteristic to predict the relative position of the mobile transceivers, a strategy is developed to cooperate on the mobile cellular network and the Dedicated Short-Range Communications(DSRC). Secondly, by adopting the general network simulator NS3, the dedicated mobile channel models that are suitable for the data interaction of ITS, is applied to confirm the feasibility and reliability of the strategy. Finally, by the simulation, comparison, and analysis of some critical performance parame-ters, we conclude that the novel strategy does not only reduce the system delay but also improve the other communication performance indicators, such as the PDR and communication capacity.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
基金supported by the Key R&D Program of Anhui Province in 2020 under Grant No.202004a05020078China Environment for Network Innovations(CENI)under Grant No.2016-000052-73-01-000515.
文摘As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.
基金supported by the National Natural Science Foundation of China(12361095)the Jiangxi Provincial Natural Science Foundation(20232BAB201028)。
文摘In recent years,the research focus in insurance risk theory has shifted towards multi-type mixed dividend strategies.However,the practical factors and constraints in financial market transactions,such as interest rates,tax rates,and transaction fees,inevitably impact these strategies.By incorporating appropriate constraints,a multi-type mixed strategy can better simulate real-world transactions.Following the approach of Liu et al.[28],we examine a classical compound Poisson risk model that incorporates the constraints of constant interest rates and a periodic-threshold mixed dividend strategy.In this model,the surplus process of insurance companies is influenced by several factors.These factors include constant interest rates,continuously distributed dividends within intervals(threshold dividend strategy),and dividends at discrete time points(periodic dividend strategy).We derive the piecewise integro-differential equations(IDEs)that describe the expected present value of dividends(EPVDs)until ruin time and the Gerber-Shiu expected discounted penalty function.Furthermore,we provide explicit solutions to these IDEs using an alternative method based on the inverse Laplace transform combined with the Dickson-Hipp operator.This enables us to obtain explicit expressions for the dividend and Gerber-Shiu functions.Additionally,we present examples to illustrate the application of our results.
基金Supported by the Laoshan Laboratory (No.LSKJ202204005)the Mount Tai Scholar Climbing Plan to Song SUNthe Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences (No.KLMEES201801)
文摘Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金Supported by National Natural Science Foundation of China (Grant Nos.52222215,52072051)Fundamental Research Funds for the Central Universities in China (Grant No.2023CDJXY-025)Chongqing Municipal Natural Science Foundation of China (Grant No.CSTB2023NSCQ-JQX0003)。
文摘The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.
基金supported by the National Key Research and Development Program of China(2022YFA1006103,2023YFA1009203)the National Natural Science Foundation of China(61925306,61821004,11831010,61977043,12001320)+2 种基金the Natural Science Foundation of Shandong Province(ZR2019ZD42,ZR2020ZD24)the Taishan Scholars Young Program of Shandong(TSQN202211032)the Young Scholars Program of Shandong University。
文摘This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals and observation equations.Firstly,to reduce the complexity of solving the meanfield game,a limiting control problem is introduced.By virtue of the decomposition approach,an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique,a decentralized control strategy and a consistency condition system are derived,and the related solvability is also addressed.Secondly,we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally,we work out a financial problem with some numerical simulations.
基金Postdoctoral Research Foundation of China (2021M700608)Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (cstc2021jcyj-bsh0047)+1 种基金Scientific Project Supported by the Bureau of Planning and Natural Resources, Chongqing (2301DH09002)Sichuan Transportation Science and Technology Project (2018ZL-01)。
文摘Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study performed qualitative analysis of fault zones and proposed a zoning method to assess the landslide susceptibility in Chengkou County, Chongqing Municipality, China. The region within a distance of 1 km from the faults was designated as sub-zone A, while the remaining area was labeled as sub-zone B. To accomplish the assessment, a dataset comprising 388 historical landslides and 388 non-landslide points was used to train the random forest model. 10-fold cross-validation was utilized to select the training and testing datasets for the model. The results of the models were analyzed and discussed, with a focus on model performance and prediction uncertainty. By implementing the proposed division strategy based on fault zone, the accuracy, precision, recall, F-score, and AUC of both two sub-zones surpassed those of the whole region. In comparison to the results obtained for the whole region, sub-zone B exhibited an increase in AUC by 6.15%, while sub-zone A demonstrated a corresponding increase of 1.66%. Moreover, the results of 100 random realizations indicated that the division strategy has little effect on the prediction uncertainty. This study introduces a novel approach to enhance the prediction accuracy of the landslide susceptibility mapping model in areas with multiple fault zones.
文摘Since the emergence of COVID-19 in 2020,the threaten of emerging infectious diseases(EIDs)has attracted great attentions and echoes either from professional institutions,governments or public.The conceptualization of“Disease X”,which covers more than 30 families of viruses,has strongly actuated various resources into the development of medical countermeasures and the research across all families of pathogens.On the other hand,the endemic even pandemic old communicable diseases,such as tuberculosis(TB),malaria,HIV/AIDS,etc.,should never be neglected.Globally in 2023,the estimated TB cases was 10.8 million and the estimated deaths was 1.25 million according to the Global Tuberculosis Report 2024 by World Health Organization(WHO)[1].The most affected countries are India,Indonesia,China,the Philippines,Pakistan,Nigeria,Bangladesh,and the Democratic Republic of the Congo.
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-C&TB-030).
文摘It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.
基金supported by the National Natural Science Foundation of China(No.22306178 and 22176155)Outstanding Youth Talents of Sichuan Science and Technology Program(No.22JCQN0061)+1 种基金National Natural Science Foundation of China(No.22306012)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110578).
文摘In semiconductor photocatalysts,the easy recombination of photogenerated carriers seriously affects the application of photocatalytic materials in water treatment.To solve the serious problem of electron−hole pair recombination in perylene diimide(PDI)organic semiconductors,we loaded ferric hydroxyl oxide(FeOOH)on PDI materials,successfully prepared novel FeOOH@PDI photocatalytic materials,and constructed a photo-Fenton system.The system was able to achieve highly efficient degradation of BPA under visible light,with a degradation rate of 0.112 min^(−1)that was 20 times higher than the PDI system,and it also showed universal degradation performances for a variety of emerging organic pollutants and anti-interference ability.The mechanism research revealed that the FeOOH has the electron trapping property,which can capture the photogenerated electrons on the surface of PDI,effectively reducing the compounding rate of photogenerated carriers of PDI and accelerating the iron cycling and H2O2 activation on the surface of FeOOH at the same time.This work provides new insights and methods for solving the problem of easy recombination of carriers in semiconductor photocatalysts and degrading emerging organic pollutants.
文摘To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to transform renewable energy resources into primary power sources.The large-scale integration of high proportions of renewable energy sources and power electronic devices will dramatically change the operational mechanisms and control strategies of power systems.Existing wind and solar converters mostly adopt the grid-following control mode,which leads to significant challenges in system security and stability as it is insufficient to support the frequency and voltage of the grid.On the other hand,grid-forming control technology(GFM)can provide voltage and frequency support for the system,and thus becomes an effective measure to improve the inertia and damping characteristics of power systems.This paper illustrates the principles,control strategies,equipment types,application scenarios,and project implementation of grid-forming technology.The simulation and analysis based on a renewable-dominated real new-type power system show that GFM can significantly enhance the frequency and voltage support capacity of the power system,improve renewable energy accommodation capacity and grid transmission capacity under weak grid conditions,and play an important role in enhancing the stability and power supply reliability of renewable-dominated new-type power systems.
文摘BACKGROUND The incidence of rectal cancer is increasing worldwide,and surgery remains the primary treatment modality.With the advent of total mesorectal excision(TME)technique,the probability of tumor recurrence post-surgery has significantly decreased.Surgeons'focus has gradually shifted towards minimizing the impact of surgery on urinary and sexual functions.Among these concerns,the optimal dissection of the rectal lateral ligaments and preservation of the pelvic floor neuro-vascular bundle have become critical.To explore the optimal surgical technique for TME and establish a standardized surgical protocol to minimize the impact on urinary and sexual functions,we propose the eight-zone dissection strategy for pelvic floor anatomy.AIM To compare the differences in surgical specimen integrity and postoperative quality of life satisfaction between the traditional pelvic floor dissection strategy and the innovative eight-zone dissection strategy.METHODS We analyzed the perioperative data of patients who underwent laparoscopic radical resection of rectal cancer at Qilu Hospital of Shandong University between January 1,2021 and December 1,2023.This study included a total of 218 patients undergoing laparoscopic radical surgery for rectal cancer,among whom 109 patients underwent traditional pelvic floor dissection strategy,and 109 patients received the eight-zone dissection strategy.RESULTS There were no significant differences in general characteristics between the two groups.Patients in the eight-zone dissection group had higher postoperative specimen integrity(88.1%vs 78.0%,P=0.047).At the 3-month followup,patients in the eight-zone surgery group had better scores in urinary issues(6.8±3.3 vs 5.3±2.5,P=0.045)and male sexual desire(2.2±0.6 vs 2.5±0.5,P=0.047)compared to the traditional surgery strategy group.CONCLUSION This study demonstrates that the eight-zone dissection strategy for laparoscopic lateral ligament dissection of rectal cancer is safe and effective.Compared with the traditional pelvic floor dissection strategy,this approach can reduce the risk of nerve injury and minimize the impact on urinary and sexual functions.Therefore,we recommend the clinical application of this strategy to better serve patients with rectal cancer.
基金This work was supported by Ph.D.Intelligent Innovation Foundation Project(201-CXCY-A01-08-19-01)Science and Technology on Information System Engineering Laboratory(05202007).
文摘As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.