Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in t...Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in the static and seismic stability of the pile–slope caused by the interaction between stabilizing piles. Pile–slope stability analysis was performed to determine the optimal design of piles along a slope and the corresponding failure mode involving the formation of soil arching around two adjacent piles. The Factor of Safety(FS) of the slope was evaluated using the shear strength reduction method for static and seismic analyses. The results of the analysis show that suitable pile spacing(S) and a suitable pile diameter(D) in the middle of a slope result in the maximum FS for the pile–slope system and the formation of soil arching around two adjacent piles. FS of the pile–slope increased negligibly in the seismic analysis of piles located at the slope crest and toe. An optimized pile diameter and installation location afforded the maximum FS for the slope that corresponded to a specified slope failure mode for different pile locations. A pile spacing S ≤ 2.5D for piles installed in the middle of the slope is suggested for increasing the static and seismic pile–slope stability.展开更多
Zhangmu Town in Tibet of China,which lies in the southern piedmont of the median Himalayas,is a small but strategically important port of trade exchange between China and Nepal.Many rockfall events have occurred in Zh...Zhangmu Town in Tibet of China,which lies in the southern piedmont of the median Himalayas,is a small but strategically important port of trade exchange between China and Nepal.Many rockfall events have occurred in Zhangmu since 1970,resulting in huge economic losses and serious influence on the bilateral trade.We conducted a detailed field investigation on the high and steep slope in Zhangmu Town,and analyzed the distribution features,stability,failure modes and evolution of dangerous rocks of potential rockfalls.Then we numerically simulated the movement path,velocity and accumulation forms of the rockfall with PFC^(3D) program.The results indicated that the dangerous rock belt could be divided into three sections,namely,unstable section,slightly stable section and basically stable section.It was estimated that the rock debris and single dangerous rock would be unstable in the case of earthquakes or rainstorms.Due to the terrain constraints,the fallen rocks would scatter near the mouth of the Zhangmu ditch and in the Buqu River through multiple times of rolling,collision-induced diversion and bouncing.Without reinforcement,the rockfall could cause serious damage to the car parks,gas stations and National Highway 318 along the line from Zhangmu Town to Zhangmu ditch.Based on the field survey and numerical simulation,we recommended rockfall removal and interception as the major prevention measures,and protective sheds as auxiliary measure.展开更多
Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism...Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism can occur due to a reduction of strength with increasing strain. Finite element method based numerical approaches have been widely performed for simulating such failure mechanism,owning to their ability for tracing the formation and development of the localized shear strain. However,the reliability of the currently used approaches are often affected by poor convergence or significant mesh-dependency,and their applicability is limited by the use of complicated soil models. This paper aims to overcome these limitations by developing a finite element approach using a local arc-length controlled iterative algorithm as the solution strategy. In the proposed finite element approach,the soils are simulated with an elastoplastic constitutive model in conjunction with the Mohr-Coulomb yield function. The strain-softening behavior is represented by a piece-wise linearrelationship between the Mohr-Coulomb strength parameters and the deviatoric plastic strain. To assess the reliability of the proposed finite element approach,comparisons of the numerical solutions obtained by different finite element methods and meshes with various qualities are presented. Moreover,a landslide triggered by excavation in a real expressway construction project is analyzed by the presented finite element approach to demonstrate its applicability for practical engineering problems.展开更多
Tunnels in fractured rock masses are typically damaged by dynamic disturbances from various directions.To investigate the influence of blasting load directions on the stability of a tunnel with a precrack nearby,blast...Tunnels in fractured rock masses are typically damaged by dynamic disturbances from various directions.To investigate the influence of blasting load directions on the stability of a tunnel with a precrack nearby,blasting tests were conducted on the physical models of an external crack around a tunnel(ECT)in this study.Failure modes of the tunnels were analysed based on stress wave theory.The Riedel-Hiermaier-Thoma(RHT)material model was employed to perform the numerical simulations on ECT models.Stress distribution around the tunnels and final failure patterns of the tunnels were characterised.The results show that,under blasting loads,the pre-crack propagates and then new cracks initiates on the incident side of the tunnel.These cracks extend towards each other and eventually coalesce.Blasting load directions significantly influence the ultimate failure mode of the tunnel in the fractured rock masses.The new cracks on the shadow side of the tunnel appear at different positions when the blasting stress waves come from various directions.The results are meaningful to the analysis of tunnel stability and optimisation of the tunnel support scheme.展开更多
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
文摘Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in the static and seismic stability of the pile–slope caused by the interaction between stabilizing piles. Pile–slope stability analysis was performed to determine the optimal design of piles along a slope and the corresponding failure mode involving the formation of soil arching around two adjacent piles. The Factor of Safety(FS) of the slope was evaluated using the shear strength reduction method for static and seismic analyses. The results of the analysis show that suitable pile spacing(S) and a suitable pile diameter(D) in the middle of a slope result in the maximum FS for the pile–slope system and the formation of soil arching around two adjacent piles. FS of the pile–slope increased negligibly in the seismic analysis of piles located at the slope crest and toe. An optimized pile diameter and installation location afforded the maximum FS for the slope that corresponded to a specified slope failure mode for different pile locations. A pile spacing S ≤ 2.5D for piles installed in the middle of the slope is suggested for increasing the static and seismic pile–slope stability.
基金the National Key Research and Development Program(Grant No.2019YFC1509704)National Natural Science Foundation of China(Grant No.U1704243)。
文摘Zhangmu Town in Tibet of China,which lies in the southern piedmont of the median Himalayas,is a small but strategically important port of trade exchange between China and Nepal.Many rockfall events have occurred in Zhangmu since 1970,resulting in huge economic losses and serious influence on the bilateral trade.We conducted a detailed field investigation on the high and steep slope in Zhangmu Town,and analyzed the distribution features,stability,failure modes and evolution of dangerous rocks of potential rockfalls.Then we numerically simulated the movement path,velocity and accumulation forms of the rockfall with PFC^(3D) program.The results indicated that the dangerous rock belt could be divided into three sections,namely,unstable section,slightly stable section and basically stable section.It was estimated that the rock debris and single dangerous rock would be unstable in the case of earthquakes or rainstorms.Due to the terrain constraints,the fallen rocks would scatter near the mouth of the Zhangmu ditch and in the Buqu River through multiple times of rolling,collision-induced diversion and bouncing.Without reinforcement,the rockfall could cause serious damage to the car parks,gas stations and National Highway 318 along the line from Zhangmu Town to Zhangmu ditch.Based on the field survey and numerical simulation,we recommended rockfall removal and interception as the major prevention measures,and protective sheds as auxiliary measure.
基金funded by the Chinese National Basic Research Program (2010CB731503)
文摘Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism can occur due to a reduction of strength with increasing strain. Finite element method based numerical approaches have been widely performed for simulating such failure mechanism,owning to their ability for tracing the formation and development of the localized shear strain. However,the reliability of the currently used approaches are often affected by poor convergence or significant mesh-dependency,and their applicability is limited by the use of complicated soil models. This paper aims to overcome these limitations by developing a finite element approach using a local arc-length controlled iterative algorithm as the solution strategy. In the proposed finite element approach,the soils are simulated with an elastoplastic constitutive model in conjunction with the Mohr-Coulomb yield function. The strain-softening behavior is represented by a piece-wise linearrelationship between the Mohr-Coulomb strength parameters and the deviatoric plastic strain. To assess the reliability of the proposed finite element approach,comparisons of the numerical solutions obtained by different finite element methods and meshes with various qualities are presented. Moreover,a landslide triggered by excavation in a real expressway construction project is analyzed by the presented finite element approach to demonstrate its applicability for practical engineering problems.
基金funded by the National Natural Science Foundation of China(Grant No.U19A2098)the open fund of MOE Key Laboratory of Deep Underground Science and Engineering(Grant No.DESEYU202101)the Sichuan Science and Technology Program(Grant No.2021YJ0511)。
文摘Tunnels in fractured rock masses are typically damaged by dynamic disturbances from various directions.To investigate the influence of blasting load directions on the stability of a tunnel with a precrack nearby,blasting tests were conducted on the physical models of an external crack around a tunnel(ECT)in this study.Failure modes of the tunnels were analysed based on stress wave theory.The Riedel-Hiermaier-Thoma(RHT)material model was employed to perform the numerical simulations on ECT models.Stress distribution around the tunnels and final failure patterns of the tunnels were characterised.The results show that,under blasting loads,the pre-crack propagates and then new cracks initiates on the incident side of the tunnel.These cracks extend towards each other and eventually coalesce.Blasting load directions significantly influence the ultimate failure mode of the tunnel in the fractured rock masses.The new cracks on the shadow side of the tunnel appear at different positions when the blasting stress waves come from various directions.The results are meaningful to the analysis of tunnel stability and optimisation of the tunnel support scheme.