In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory in...In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory integrations,achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code(Version 3).By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes,it is found that stratosphere-to-troposphere transport(STT)fluxes exist in the center of COLs;and in the periphery of the COL center,troposphereto-stratosphere transport(TST)fluxes and STT fluxes are distributed alternately.Net transport fluxes in COLs are from stratosphere to troposphere,and the magnitude is about 10-4 kg m-2 s-1.The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs.By adopting appropriate residence time,the spurious transports are effectively excluded.Finally,the authors compare the results with previous studies,and find that the cross-tropopause fluxes(CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs.COLs play a significant role in local,rapid air mass exchanges,although they may only be responsible for a fraction of the total STE.展开更多
This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particula...This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particular emphasis on interactive stratosphere-troposphere processes. The submonthly variability is identified and measured using a daily NAM index, which concentrates primarily on zonally symmetrical circulation. A schematic lifecycle of submonthly variability is developed that reveals a two-way coupling pro- cess between the stratosphere and troposphere in the NH polar region. Specifically, anomalous tropospheric zonal winds in the Atlantic and Pacific sectors of the Arctic propagate upwards to the low stratosphere, disturbing the polar vortex, and resulting in an anomalous stratospheric geopotential height (HGT) that subsequently propagates down into the troposphere and changes the sign of the surface circulations. From the standpoint of planetary-scale wave activities, a feedback loop is also evident when the anoma- lous planetary-scale waves (with wavenumbers 2 and 3) propagate upwards, which disturbs the anomalous zonally symmetrical flow in the low stratosphere, and induces the anomalous HGT to move poleward in the low stratosphere, and then propagates down into the troposphere. This increases the energy of waves at wavenumbers 2 and 3 in the low troposphere in middle latitudes by enhancing the land-sea contrast of the anomalous HGT field. Thus, this study supports the viewpoint that the downward propagation of stratospheric NAM signals may not originate in the stratosphere.展开更多
To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data prov...To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.展开更多
In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated oz...In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated ozone profiles shows the vari- ation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere-troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.展开更多
The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate.In particular, the Asian summer monsoon(ASM) anticyclone circulation system over the Tibetan...The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate.In particular, the Asian summer monsoon(ASM) anticyclone circulation system over the Tibetan Plateau is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. To improve understanding of these physical processes, a multi-location joint atmospheric experiment was performed over the Tibetan Plateau from late July to August in 2018, funded by the fiveyear(2018–2022) STEAM(stratosphere and troposphere exchange experiment during ASM) project, during which multiple platforms/instruments—including long-duration stratospheric balloons, dropsondes, unmanned aerial vehicles, special sounding systems, and ground-based and satellite-borne instruments—will be deployed. These complementary methods of data acquisition are expected to provide comprehensive atmospheric parameters(aerosol, ozone, water vapor, CO_2, CH_4, CO, temperature, pressure,turbulence, radiation, lightning and wind); the richness of this approach is expected to advance our comprehension of key mechanisms associated with thermal, dynamical, radiative, and chemical transports over the Tibetan Plateau during ASM activity.展开更多
The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative re...The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative relative diffusion region exists, i.e., σy∝ t 3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given by σy = √2KT. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests. Key words Tropospheric and lower stratospheric diffusion - Relative diffusion - Large scale turbulence - Nuclear explosion clouds This work is sponsored by the National Natural Science Foundation of China under Grant No. 49505064.The author would like to thank Prof. Chen Jiayi Department of Geophysics of Peking University and Dr. Cai Xiaoming School of Geography and Environmental Sciences of Birmingham University for their helpful discussions.展开更多
This study produced a novel characterization of the troposphere-to-stratosphere transport (TST) over the Asian monsoon region during boreal summer, using a comprehensive analysis of 60-day backward trajectories init...This study produced a novel characterization of the troposphere-to-stratosphere transport (TST) over the Asian monsoon region during boreal summer, using a comprehensive analysis of 60-day backward trajectories initialized in the stratosphere. The trajectory datasets were derived from the high-resolution Lagrangian particle dispersion model (FLEXPART) simulation driven by the wind fields acquired from the National Center for Environmental Prediction (NCEP). The results indicate that the distribution of residence time (tTST) of tropopause-crossing trajectories in the lowermost stratosphere represents a horizontal signature of the Asian summer monsoon. Vertically, the distribution of tTST can be roughly separated into two layers: a consistent lower layer with tTST 〈5 days forming a narrow band, corresponding to a layer-3 km thick following the location of the tropopause, and an upper layer at a larger distance from the local tropopause. The maximum residence time was -20 days, especially within the Asian high anticyclone consistent with its confinement effects. In general, the overall geographical distribution of dehydration points was not coincident with the location of tropopause crossing. TST trajectories, which were initialized in the stratosphere, underwent their Lagrangian cold points mostly in the tropics and subtropics 1 4 days after the TST event; they were characterized by a wide range of temperature differences, with a mean value of 3-12 K. The vertical extent of the influence of tropospheric intrusion on the Asian monsoon region in the stratosphere exhibited a peak at -16.5-18.5 km, and the uppermost height was -21 km.展开更多
The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four mo...The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four months (June to September) of the southwest monsoon season. Variability in the quantum of rainfall during the monsoon season has profound impacts on water resources, power generation, agriculture, economics and ecosystems in the country. The inter annual variability of Indian Summer Monsoon Rainfall (ISMR) depends on atmospheric and oceanic conditions prevailed during the season. In this study we have made an attempt to understand the variation of the of zonal winds in the tropical Upper Troposphere and Lower Stratosphere (UT/LS) region during deficient and Excess rainfall years of Indian summer monsoon and its relation to Indian Summer Monsoon Rainfall (ISMR). It is found that in the equatorial Upper Troposphere zonal winds have westerly anomalies during deficient rainfall year’s and easterly anomaly during excess rainfall years of Indian summer monsoon and opposite zonal wind anomaly is noted in the equatorial Lower Stratosphere during the deficient and excess rainfall years of Indian summer monsoon. It is also found that the June to September upper troposphere zonal winds averaged between 15°N and 15°S latitudes have a long-term trend during 1960 to 1998. Over this period the tropical easterlies and the tropical jet stream have weakened with time.展开更多
The balloon-borne Aircore campaign was conducted in Inner Mongolia,China,on June 13 and 142018,which detected carbon dioxide(CO2)and carbon monoxide(CO)profiles from surface to 24 km,showing strong positive and negati...The balloon-borne Aircore campaign was conducted in Inner Mongolia,China,on June 13 and 142018,which detected carbon dioxide(CO2)and carbon monoxide(CO)profiles from surface to 24 km,showing strong positive and negative correlations between 8 km and 10 km on 13 and 14 June,respectively.Backward trajectories,meteorological analyses,and CO2 horizontal distributions were combined to interpret this phenomenon.The results indicated that the source region experienced a stratospheric intrusion and exhibited a large horizontal CO2 gradient;namely,lower CO concentrations corresponded to higher CO2 concentrations and vice versa.The laminar structure with multiple origins resulted in the highly negative correlation between CO2 and CO in the upper troposphere on 14 June.The contribution of stratospheric air mass to the upper troposphere and that of tropospheric air mass to the lower stratosphere were 26.7%and24.3%,respectively,based on a mass balance approach.Another interesting phenomenon is that CO2 and CO concentrations increased substantially at approximately 8 km on 13 June.An analysis based on the backward trajectory implied that the air mass possibly came from anthropogenic sources.The slope of CO2/CO representing the anthropogenic sources was 87.3 ppm ppm-1.In addition,the CO2 profile showed that there was a large CO2 gradient of 4 ppm km-1 within the boundary layer on 13 June,and this gradient disappeared on 14 June.展开更多
The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly dia...The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly diagnose the air mass transport between the planetary boundary layer(PBL) and the stratosphere over the AM region during 1992–2017 using the Lagrangian particle dispersion model FLEXPART based on the ERA-Interim reanalysis data.The results show that both the downward and upward deep STEs exhibit a detectable increasing trend,while the latter,namely,the deep troposphere-to-stratosphere transport(DTST),is relatively more significant.Further analysis reveals that the long-term trend of DTST over the AM region could be partly attributed to changes in the Pacific Walker circulation and the air temperature(especially at upper levels).Additionally,it is found that DTST increases markedly over the tropical oceanic regions,while the increasing DTST into the stratosphere can be attributed to the enhanced air masses originated from the PBL over the terrestrial regions,where large amounts of pollutant emissions occur.The results imply that the influence of the DTST on the chemical composition and the climate of the stratosphere over the AM region is expected to become increasingly important,and is thereby of relevance to climate projection in an evolving climate.展开更多
HALOE data from 1992 to 2003 are used to analyze the interannual variation of the HCl volume mixing ratio and its quasi-biennial oscillation (QBO) in the stratosphere, and the results are compared with the ozone QBO...HALOE data from 1992 to 2003 are used to analyze the interannual variation of the HCl volume mixing ratio and its quasi-biennial oscillation (QBO) in the stratosphere, and the results are compared with the ozone QBO. Then, the NCAR two-dimensional interactive chemical, dynamical and radiative model is used to study the effects of the wind QBO on the distribution and variation of HCl in the stratosphere. The results show that the QBO signals in the HCl mixing ratio are mainly at altitudes from 50 hPa to 5 hPa; the larger amplitudes are located between 30 hPa and 10 hPa; a higher HCl mixing ratio usually corresponds to the westerly phase of the wind QBO and a lower HCl mixing ratio usually corresponds to the easterly phase of the wind QBO in a level near 20 hPa and below. In the layer near 10 hPa-5 hPa, the phase of the HCl QBO reverses earlier than the phase of the wind QBO; the QBO signals for HCl in the extratropics are also clear, but with reversed phase compared with those over the Tropics. The HCl QBO signals at 30°N are clearer than those at 30°S; the QBOs for HCl and ozone have a similar phase at the 50 hPa-20 hPa level while they are out of phase near 10 hPa; the simulated structures of the HCl QBO agree well with observations. The mechanism for the formation of the HCl QBO and the reason for differences in the vertical structure of the HCl and ozone QBO are attributed to the transport of HCl and ozone by the wind QBO-induced meridional circulation.展开更多
This study uses multiple sea surface temperature (SST) datasets to perform a parallel comparison of three super El Nifios and their effects on the stratosphere. The results show that, different from ordinary El Nifi...This study uses multiple sea surface temperature (SST) datasets to perform a parallel comparison of three super El Nifios and their effects on the stratosphere. The results show that, different from ordinary El Nifios, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Nifio peak by more than 18 months. In the previous winter, relative to the mature phase of El Nifio, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific-North America (PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Nifios. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Nino winter, positive polar cap temperature anomalies and circumpolar easterly anomalies, though different in timing, are also observed in the mature winters of the three super El Nifios. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.展开更多
The impact of La Ni?a on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Ni?a events considered. This study shows that this...The impact of La Ni?a on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Ni?a events considered. This study shows that this is mainly due to the decadal variation of La Ni?a’s impact on the winter Arctic stratosphere since the late 1970 s. Specifically,during the period1951–78,the tropospheric La Ni?a teleconnection exhibits a typical negative Pacific–North America pattern,which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere,and leads to a significantly strengthened stratospheric polar vortex. In contrast,during 1979–2015,the La Ni?a teleconnection shifts eastwards,with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Ni?a teleconnection with climatological stationary waves seen in the earlier period reduces greatly,which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly,the stratospheric response shows a less disturbed stratospheric polar vortex in winter.展开更多
On the basis of the EOF analysis of global geopotential height anomaly(GHA)field at 10 hPa level,the arctic oscillation(AO)and the means antarctic oscillation(AAO)can bedetected more obviously at the upper level of at...On the basis of the EOF analysis of global geopotential height anomaly(GHA)field at 10 hPa level,the arctic oscillation(AO)and the means antarctic oscillation(AAO)can bedetected more obviously at the upper level of atmosphere than the AO or the AAO in surface layer.Unlike the hemisphere pattern of the AO and the AAO in the surface lager given by previous authors,the AO or the AAO in the stratosphere has its global features.The zonal oscillations—the SouthernOscillation(SO)and the north oscillation(NO)in atmospheric surface layer become less clear inthe upper air.The first mode(AO mode,abbreviated to AOM hereafter)and the second mode(AAO mode,abbreviated to AAOM hereafter)respectively have 41.47%and 27.04%of the total variancecontribution.The cumulative variance contribution of the first two modes reaches 68.51%.These twomodes are the main components for the interdecadal or decadal oscillation in the stratosphere.Inaddition,there still exist two kinds of oscillation patterns with less probability,namely,thesymmetric pattern at mid-high latitudes in the Southern Hemisphere and the asymmetric pattern.Spectral analysis shows that the AOM and the AAOM all have a spectral peak for 22 a period,beingconsistent with the periodic variations of the solar magnetic field,and a peak for 11 a period,being consistent with the period of the numbers of sunspots.Step filter analysis shows that theinfluencing factor for the upper atmospheric oscillation is the solar activity.The fluctuation ofthe solar magnetic field is the more influencing factor than the variation of the sunspot number.展开更多
The trace gases (O3, HCl, CH4, H2O, NO, NO2) in the stratosphere play an important role, not only in the photochemical processes in which the ozone layer destroyed, but also in the radiative processes. In this paper...The trace gases (O3, HCl, CH4, H2O, NO, NO2) in the stratosphere play an important role, not only in the photochemical processes in which the ozone layer destroyed, but also in the radiative processes. In this paper, we review the works on the distribution and variation of the trace gases in the stratosphere and their impact on climate, which have been carried out at the University of Science and Technology of China in the recent 20 years. The Halogen Occultation Experiment (HALOE) data were used to analyse the distribution and variation of the mixing ratio of these trace gases and the temperature trends in the stratosphere in the most recent decade. And the reanalyzed National Centers of Environmental Prediction (NCEP)/NCAR data were also used to give the temperature trends and compared with the results from HALOE data. Numerical simulations were also carried out to study the impact of ozone depletion on the global climate. In this review, the distributions of the trace gases, especially those over the Qinghai-Xizang Plateau, are discussed, and the variations and trends for the trace gases in various levels in the stratosphere have been given for the most recent decade. The temperature variation and the cooling trend obtained from HALOE data in the middle and lower stratosphere for the last 13 years are significant, which agree well with the results from NCEP/NCAR data. While the temperature trend in the upper stratosphere in this period do not seem to have much cooling. The numerical simulations show that either the Antarctic ozone hole or the ozone valley over Qinghai-Xizang Plateau affect not only the temperature and circulation in the stratosphere, but also the temperature, pressure and wind fields in the troposphere, then lead to the global climate change.展开更多
In this research, we processed the GPS and meteorological data from about 220 stations of Crustal Movement Observation Network of China(CMONOC) observed in 2014 and derived the Zenith Total Delay(ZTD) map in both spat...In this research, we processed the GPS and meteorological data from about 220 stations of Crustal Movement Observation Network of China(CMONOC) observed in 2014 and derived the Zenith Total Delay(ZTD) map in both spatial and temporal dimension. The results of ZTD have high accurate and reliable as IGS and all sites with varying locations show obvious variety characteristics of Chinese mainland. Meanwhile, the precipitable water vapor(PWV) correlation coefficients between GPS observation and upper air sounding is close to 1, and the comparison of GPS-derived PWV and observed PWV from meteorological sites indicating GPS observation data generated in CMONOC project applied to the weather forecast research is feasible. In addition, based on all stations covered the whole Chinese land area and using interpolation algorithms, we make contour plots of PWV distribution per hour. We observe obvious feature that the precipitable water in north and western area is less than south and east area all over this year. High latitudes area may be dry and low latitudes area is wet.展开更多
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactiv...To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.展开更多
To enhance the controllability of stratosphere airship,a vectored electric propulsion system is used.By using the Lagrangian method,a kinetic model of the vectored electric propulsion system is established and validat...To enhance the controllability of stratosphere airship,a vectored electric propulsion system is used.By using the Lagrangian method,a kinetic model of the vectored electric propulsion system is established and validated through ground tests.The fake gyroscopic torque is first proposed,which the vector mechanism should overcome besides the inertial torque and the gravitational torque.The fake gyroscopic torque is caused by the difference between inertial moments about two principal inertial axes of the propeller in the rotating plane,appears only when the propeller is rotating and is proportional with the rotation speed.It is a sinusoidal pulse,with a frequency that is twice of the rotation speed.Considering the fake gyroscope torque pulse and aerodynamic efficiency,three blade propeller is recommended for the vectored propulsion system used for stratosphere airship.展开更多
Utilizing three different sets of reanalysis data,this study examines the long-and short-lived observed positive North Atlantic Oscillation(NAO)events(referred to as NAO+_LE and NAO+_SE)and long-and short-lived observ...Utilizing three different sets of reanalysis data,this study examines the long-and short-lived observed positive North Atlantic Oscillation(NAO)events(referred to as NAO+_LE and NAO+_SE)and long-and short-lived observed negative NAO events(referred to as NAO−_LE and NAO−_SE).Composite results indicate that the NAO-like circulation anomalies associated with the long-lived NAO events can reach the stratosphere,while they are primarily confined to the troposphere in the short-lived NAO events.Thus,the coupling/connection of stratospheric and tropospheric circulation anomalies is much better(worse)in the long-lived(short-lived)NAO events.A series of modified stratospheric initial-value experiments conducted with a simplified model indicate that a better(worse)connection between stratospheric and tropospheric circulation anomalies in the initial-value fields tend to gradually induce the NAO-like tropospheric circulation anomalies in the troposphere on the subsequent days,and thus naturally elongate(reduce)the lifetimes of the original NAO events by altering the tropospheric synoptic eddy vorticity flux over the North Atlantic region.展开更多
Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably br...Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably bring non-ignorable errors to solutions. After analyzing the variation of mapping function errors with elevation angles based on several-year meteorological data, this paper constructed a model of this error and then proposed a two-step estimation method of troposphere delay with consideration of mapping function errors. The experimental results indicate that the method put forward by this paper could reduce the slant path delay residuals efficiently and improve the estimation accuracy of wet tropospheric delay to some extent.展开更多
基金supported by the Special Fund for Strategic Pilot Technology,Chinese Academy of Sciences[grant number XDA05040300]
文摘In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory integrations,achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code(Version 3).By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes,it is found that stratosphere-to-troposphere transport(STT)fluxes exist in the center of COLs;and in the periphery of the COL center,troposphereto-stratosphere transport(TST)fluxes and STT fluxes are distributed alternately.Net transport fluxes in COLs are from stratosphere to troposphere,and the magnitude is about 10-4 kg m-2 s-1.The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs.By adopting appropriate residence time,the spurious transports are effectively excluded.Finally,the authors compare the results with previous studies,and find that the cross-tropopause fluxes(CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs.COLs play a significant role in local,rapid air mass exchanges,although they may only be responsible for a fraction of the total STE.
基金jointly supported by the R&D Special Fund for Public Welfare Industry(meteorology)of China(Grant No.GYHY201306031)the National Natural Science Foundation of China(Grant No.40905040)the National Science Foundation of United States(Grant No.1107509)
文摘This paper examines the dominant submonthly variability of zonally symmetrical atmospheric circula- tion in the Northern Hemisphere (NH) winter within the context of the Northern Annular Mode (NAM), with particular emphasis on interactive stratosphere-troposphere processes. The submonthly variability is identified and measured using a daily NAM index, which concentrates primarily on zonally symmetrical circulation. A schematic lifecycle of submonthly variability is developed that reveals a two-way coupling pro- cess between the stratosphere and troposphere in the NH polar region. Specifically, anomalous tropospheric zonal winds in the Atlantic and Pacific sectors of the Arctic propagate upwards to the low stratosphere, disturbing the polar vortex, and resulting in an anomalous stratospheric geopotential height (HGT) that subsequently propagates down into the troposphere and changes the sign of the surface circulations. From the standpoint of planetary-scale wave activities, a feedback loop is also evident when the anoma- lous planetary-scale waves (with wavenumbers 2 and 3) propagate upwards, which disturbs the anomalous zonally symmetrical flow in the low stratosphere, and induces the anomalous HGT to move poleward in the low stratosphere, and then propagates down into the troposphere. This increases the energy of waves at wavenumbers 2 and 3 in the low troposphere in middle latitudes by enhancing the land-sea contrast of the anomalous HGT field. Thus, this study supports the viewpoint that the downward propagation of stratospheric NAM signals may not originate in the stratosphere.
基金Guangdong Basic and Applied Basic Research Foundation(2023A1515011323)National Natural Science Foun-dation of China(42130604,42130605,72293604)+4 种基金Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Waters(GSTOEW)First-Class Discipline Plan of Guangdong Province(080503032101,231420003)Fundamental Research Funds for the Central Universities(202362001,202072010)China Scholarship Council(202208440223)Natural Science Foundation of Shanghai(23ZR1473800)。
文摘To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.
基金jointly supported by the National Basic Research Program of China (Grant No.2010CB428602)the National Natural Science Foundation of China (Grant Nos.41275046 and 41025017)
文摘In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated ozone profiles shows the vari- ation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere-troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA17010101, XDA17010102, XDA17010103, XDA17010104 and XDA17010105)
文摘The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate.In particular, the Asian summer monsoon(ASM) anticyclone circulation system over the Tibetan Plateau is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. To improve understanding of these physical processes, a multi-location joint atmospheric experiment was performed over the Tibetan Plateau from late July to August in 2018, funded by the fiveyear(2018–2022) STEAM(stratosphere and troposphere exchange experiment during ASM) project, during which multiple platforms/instruments—including long-duration stratospheric balloons, dropsondes, unmanned aerial vehicles, special sounding systems, and ground-based and satellite-borne instruments—will be deployed. These complementary methods of data acquisition are expected to provide comprehensive atmospheric parameters(aerosol, ozone, water vapor, CO_2, CH_4, CO, temperature, pressure,turbulence, radiation, lightning and wind); the richness of this approach is expected to advance our comprehension of key mechanisms associated with thermal, dynamical, radiative, and chemical transports over the Tibetan Plateau during ASM activity.
文摘The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative relative diffusion region exists, i.e., σy∝ t 3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given by σy = √2KT. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests. Key words Tropospheric and lower stratospheric diffusion - Relative diffusion - Large scale turbulence - Nuclear explosion clouds This work is sponsored by the National Natural Science Foundation of China under Grant No. 49505064.The author would like to thank Prof. Chen Jiayi Department of Geophysics of Peking University and Dr. Cai Xiaoming School of Geography and Environmental Sciences of Birmingham University for their helpful discussions.
基金the National Natural Science Foundation of China(Grant No.41105027 and 41130960)the Key Project of Basic Scientific Research and Operation fund of the Chinese Academy of Meteorological Sciences(Grant No.2011Z001)the Special Scientific Research Project of China Commonweal Trade(Meteorology)(Grant Nos. GYHY201006009 and GYHY201006053)
文摘This study produced a novel characterization of the troposphere-to-stratosphere transport (TST) over the Asian monsoon region during boreal summer, using a comprehensive analysis of 60-day backward trajectories initialized in the stratosphere. The trajectory datasets were derived from the high-resolution Lagrangian particle dispersion model (FLEXPART) simulation driven by the wind fields acquired from the National Center for Environmental Prediction (NCEP). The results indicate that the distribution of residence time (tTST) of tropopause-crossing trajectories in the lowermost stratosphere represents a horizontal signature of the Asian summer monsoon. Vertically, the distribution of tTST can be roughly separated into two layers: a consistent lower layer with tTST 〈5 days forming a narrow band, corresponding to a layer-3 km thick following the location of the tropopause, and an upper layer at a larger distance from the local tropopause. The maximum residence time was -20 days, especially within the Asian high anticyclone consistent with its confinement effects. In general, the overall geographical distribution of dehydration points was not coincident with the location of tropopause crossing. TST trajectories, which were initialized in the stratosphere, underwent their Lagrangian cold points mostly in the tropics and subtropics 1 4 days after the TST event; they were characterized by a wide range of temperature differences, with a mean value of 3-12 K. The vertical extent of the influence of tropospheric intrusion on the Asian monsoon region in the stratosphere exhibited a peak at -16.5-18.5 km, and the uppermost height was -21 km.
文摘The Indian summer monsoon is one of the most dominant tropical circulation systems in the general circulation of the atmosphere. The country receives more than 80% of the annual rainfall during a short span of four months (June to September) of the southwest monsoon season. Variability in the quantum of rainfall during the monsoon season has profound impacts on water resources, power generation, agriculture, economics and ecosystems in the country. The inter annual variability of Indian Summer Monsoon Rainfall (ISMR) depends on atmospheric and oceanic conditions prevailed during the season. In this study we have made an attempt to understand the variation of the of zonal winds in the tropical Upper Troposphere and Lower Stratosphere (UT/LS) region during deficient and Excess rainfall years of Indian summer monsoon and its relation to Indian Summer Monsoon Rainfall (ISMR). It is found that in the equatorial Upper Troposphere zonal winds have westerly anomalies during deficient rainfall year’s and easterly anomaly during excess rainfall years of Indian summer monsoon and opposite zonal wind anomaly is noted in the equatorial Lower Stratosphere during the deficient and excess rainfall years of Indian summer monsoon. It is also found that the June to September upper troposphere zonal winds averaged between 15°N and 15°S latitudes have a long-term trend during 1960 to 1998. Over this period the tropical easterlies and the tropical jet stream have weakened with time.
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(Grant No.XDA17010100)the National Natural Science Foundation of China(Grant No.41875043)+1 种基金the Youth Innovation Promotion Association,CAS,theKey Research Program of CAS(Grant No.ZDRW-ZS-2019-1)the External Cooperation Program of CAS(Grant No.GJHZ 1802)。
文摘The balloon-borne Aircore campaign was conducted in Inner Mongolia,China,on June 13 and 142018,which detected carbon dioxide(CO2)and carbon monoxide(CO)profiles from surface to 24 km,showing strong positive and negative correlations between 8 km and 10 km on 13 and 14 June,respectively.Backward trajectories,meteorological analyses,and CO2 horizontal distributions were combined to interpret this phenomenon.The results indicated that the source region experienced a stratospheric intrusion and exhibited a large horizontal CO2 gradient;namely,lower CO concentrations corresponded to higher CO2 concentrations and vice versa.The laminar structure with multiple origins resulted in the highly negative correlation between CO2 and CO in the upper troposphere on 14 June.The contribution of stratospheric air mass to the upper troposphere and that of tropospheric air mass to the lower stratosphere were 26.7%and24.3%,respectively,based on a mass balance approach.Another interesting phenomenon is that CO2 and CO concentrations increased substantially at approximately 8 km on 13 June.An analysis based on the backward trajectory implied that the air mass possibly came from anthropogenic sources.The slope of CO2/CO representing the anthropogenic sources was 87.3 ppm ppm-1.In addition,the CO2 profile showed that there was a large CO2 gradient of 4 ppm km-1 within the boundary layer on 13 June,and this gradient disappeared on 14 June.
基金Supported by the National Key Research and Development Program of China (2023YFC3010700)Second Tibetan Plateau Comprehensive Scientific Expedition and Research Program (2019QZKK0105)Science and Technology Development Fund of Chinese Academy of Meteorological Sciences (2023KJ027 and 2024KJ012)。
文摘The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly diagnose the air mass transport between the planetary boundary layer(PBL) and the stratosphere over the AM region during 1992–2017 using the Lagrangian particle dispersion model FLEXPART based on the ERA-Interim reanalysis data.The results show that both the downward and upward deep STEs exhibit a detectable increasing trend,while the latter,namely,the deep troposphere-to-stratosphere transport(DTST),is relatively more significant.Further analysis reveals that the long-term trend of DTST over the AM region could be partly attributed to changes in the Pacific Walker circulation and the air temperature(especially at upper levels).Additionally,it is found that DTST increases markedly over the tropical oceanic regions,while the increasing DTST into the stratosphere can be attributed to the enhanced air masses originated from the PBL over the terrestrial regions,where large amounts of pollutant emissions occur.The results imply that the influence of the DTST on the chemical composition and the climate of the stratosphere over the AM region is expected to become increasingly important,and is thereby of relevance to climate projection in an evolving climate.
基金This work was supported by the National Natural Science Foundation of China(Grant No.40375012)
文摘HALOE data from 1992 to 2003 are used to analyze the interannual variation of the HCl volume mixing ratio and its quasi-biennial oscillation (QBO) in the stratosphere, and the results are compared with the ozone QBO. Then, the NCAR two-dimensional interactive chemical, dynamical and radiative model is used to study the effects of the wind QBO on the distribution and variation of HCl in the stratosphere. The results show that the QBO signals in the HCl mixing ratio are mainly at altitudes from 50 hPa to 5 hPa; the larger amplitudes are located between 30 hPa and 10 hPa; a higher HCl mixing ratio usually corresponds to the westerly phase of the wind QBO and a lower HCl mixing ratio usually corresponds to the easterly phase of the wind QBO in a level near 20 hPa and below. In the layer near 10 hPa-5 hPa, the phase of the HCl QBO reverses earlier than the phase of the wind QBO; the QBO signals for HCl in the extratropics are also clear, but with reversed phase compared with those over the Tropics. The HCl QBO signals at 30°N are clearer than those at 30°S; the QBOs for HCl and ozone have a similar phase at the 50 hPa-20 hPa level while they are out of phase near 10 hPa; the simulated structures of the HCl QBO agree well with observations. The mechanism for the formation of the HCl QBO and the reason for differences in the vertical structure of the HCl and ozone QBO are attributed to the transport of HCl and ozone by the wind QBO-induced meridional circulation.
基金supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (Grant No. 2016r060)the National Key Research and Development Program (Grant No. 2016YFA0602104)+2 种基金the National Natural Science Foundation of China (Grant Nos. 41575041, 41430533 and 91437105)the Chinese Academy of Sciences (Grant No. XDA11010402)the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201406001)
文摘This study uses multiple sea surface temperature (SST) datasets to perform a parallel comparison of three super El Nifios and their effects on the stratosphere. The results show that, different from ordinary El Nifios, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Nifio peak by more than 18 months. In the previous winter, relative to the mature phase of El Nifio, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific-North America (PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Nifios. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Nino winter, positive polar cap temperature anomalies and circumpolar easterly anomalies, though different in timing, are also observed in the mature winters of the three super El Nifios. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.
基金jointly supported by an NSFC project (Grant Nos.41505034,41630423)the China National 973 project (Grant No.2015CB453200)+8 种基金NSF (AGS1565653)NSFC project (Grant No.41475084)NRL (Grant No.N00173-161G906)Jiangsu NSF key project (Grant No.BK20150062)the Startup Foundation for Introducing Talent of NUIST (Grant No.2014R010)a project funded by the Jiangsu Shuang-Chuang Team (Grant No.R2014SCT001)the Startup Foundation for Introducing Talent of NUIST (Grant No.2014R010)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe China Scholarship Council for funding and travel support
文摘The impact of La Ni?a on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Ni?a events considered. This study shows that this is mainly due to the decadal variation of La Ni?a’s impact on the winter Arctic stratosphere since the late 1970 s. Specifically,during the period1951–78,the tropospheric La Ni?a teleconnection exhibits a typical negative Pacific–North America pattern,which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere,and leads to a significantly strengthened stratospheric polar vortex. In contrast,during 1979–2015,the La Ni?a teleconnection shifts eastwards,with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Ni?a teleconnection with climatological stationary waves seen in the earlier period reduces greatly,which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly,the stratospheric response shows a less disturbed stratospheric polar vortex in winter.
基金supprted by the National Natural Science Foundations of China under contract Nos 40475033 and 40305009.
文摘On the basis of the EOF analysis of global geopotential height anomaly(GHA)field at 10 hPa level,the arctic oscillation(AO)and the means antarctic oscillation(AAO)can bedetected more obviously at the upper level of atmosphere than the AO or the AAO in surface layer.Unlike the hemisphere pattern of the AO and the AAO in the surface lager given by previous authors,the AO or the AAO in the stratosphere has its global features.The zonal oscillations—the SouthernOscillation(SO)and the north oscillation(NO)in atmospheric surface layer become less clear inthe upper air.The first mode(AO mode,abbreviated to AOM hereafter)and the second mode(AAO mode,abbreviated to AAOM hereafter)respectively have 41.47%and 27.04%of the total variancecontribution.The cumulative variance contribution of the first two modes reaches 68.51%.These twomodes are the main components for the interdecadal or decadal oscillation in the stratosphere.Inaddition,there still exist two kinds of oscillation patterns with less probability,namely,thesymmetric pattern at mid-high latitudes in the Southern Hemisphere and the asymmetric pattern.Spectral analysis shows that the AOM and the AAOM all have a spectral peak for 22 a period,beingconsistent with the periodic variations of the solar magnetic field,and a peak for 11 a period,being consistent with the period of the numbers of sunspots.Step filter analysis shows that theinfluencing factor for the upper atmospheric oscillation is the solar activity.The fluctuation ofthe solar magnetic field is the more influencing factor than the variation of the sunspot number.
基金the National Science Foundation of China, Nos. 40375012 , 40505008.
文摘The trace gases (O3, HCl, CH4, H2O, NO, NO2) in the stratosphere play an important role, not only in the photochemical processes in which the ozone layer destroyed, but also in the radiative processes. In this paper, we review the works on the distribution and variation of the trace gases in the stratosphere and their impact on climate, which have been carried out at the University of Science and Technology of China in the recent 20 years. The Halogen Occultation Experiment (HALOE) data were used to analyse the distribution and variation of the mixing ratio of these trace gases and the temperature trends in the stratosphere in the most recent decade. And the reanalyzed National Centers of Environmental Prediction (NCEP)/NCAR data were also used to give the temperature trends and compared with the results from HALOE data. Numerical simulations were also carried out to study the impact of ozone depletion on the global climate. In this review, the distributions of the trace gases, especially those over the Qinghai-Xizang Plateau, are discussed, and the variations and trends for the trace gases in various levels in the stratosphere have been given for the most recent decade. The temperature variation and the cooling trend obtained from HALOE data in the middle and lower stratosphere for the last 13 years are significant, which agree well with the results from NCEP/NCAR data. While the temperature trend in the upper stratosphere in this period do not seem to have much cooling. The numerical simulations show that either the Antarctic ozone hole or the ozone valley over Qinghai-Xizang Plateau affect not only the temperature and circulation in the stratosphere, but also the temperature, pressure and wind fields in the troposphere, then lead to the global climate change.
文摘In this research, we processed the GPS and meteorological data from about 220 stations of Crustal Movement Observation Network of China(CMONOC) observed in 2014 and derived the Zenith Total Delay(ZTD) map in both spatial and temporal dimension. The results of ZTD have high accurate and reliable as IGS and all sites with varying locations show obvious variety characteristics of Chinese mainland. Meanwhile, the precipitable water vapor(PWV) correlation coefficients between GPS observation and upper air sounding is close to 1, and the comparison of GPS-derived PWV and observed PWV from meteorological sites indicating GPS observation data generated in CMONOC project applied to the weather forecast research is feasible. In addition, based on all stations covered the whole Chinese land area and using interpolation algorithms, we make contour plots of PWV distribution per hour. We observe obvious feature that the precipitable water in north and western area is less than south and east area all over this year. High latitudes area may be dry and low latitudes area is wet.
基金supported by the National Basic Research Program of China (2010CB428603)the National Natural Science Foundation of China (40505008, 40705014, and 40633015)
文摘To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.
文摘To enhance the controllability of stratosphere airship,a vectored electric propulsion system is used.By using the Lagrangian method,a kinetic model of the vectored electric propulsion system is established and validated through ground tests.The fake gyroscopic torque is first proposed,which the vector mechanism should overcome besides the inertial torque and the gravitational torque.The fake gyroscopic torque is caused by the difference between inertial moments about two principal inertial axes of the propeller in the rotating plane,appears only when the propeller is rotating and is proportional with the rotation speed.It is a sinusoidal pulse,with a frequency that is twice of the rotation speed.Considering the fake gyroscope torque pulse and aerodynamic efficiency,three blade propeller is recommended for the vectored propulsion system used for stratosphere airship.
基金This work was supported by National Natural Science Foundation of China(Grant No.41790473).
文摘Utilizing three different sets of reanalysis data,this study examines the long-and short-lived observed positive North Atlantic Oscillation(NAO)events(referred to as NAO+_LE and NAO+_SE)and long-and short-lived observed negative NAO events(referred to as NAO−_LE and NAO−_SE).Composite results indicate that the NAO-like circulation anomalies associated with the long-lived NAO events can reach the stratosphere,while they are primarily confined to the troposphere in the short-lived NAO events.Thus,the coupling/connection of stratospheric and tropospheric circulation anomalies is much better(worse)in the long-lived(short-lived)NAO events.A series of modified stratospheric initial-value experiments conducted with a simplified model indicate that a better(worse)connection between stratospheric and tropospheric circulation anomalies in the initial-value fields tend to gradually induce the NAO-like tropospheric circulation anomalies in the troposphere on the subsequent days,and thus naturally elongate(reduce)the lifetimes of the original NAO events by altering the tropospheric synoptic eddy vorticity flux over the North Atlantic region.
基金National Natural Science Foundation of China(No.41674082)National Natural Science Foundation of China(No.41774018)。
文摘Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably bring non-ignorable errors to solutions. After analyzing the variation of mapping function errors with elevation angles based on several-year meteorological data, this paper constructed a model of this error and then proposed a two-step estimation method of troposphere delay with consideration of mapping function errors. The experimental results indicate that the method put forward by this paper could reduce the slant path delay residuals efficiently and improve the estimation accuracy of wet tropospheric delay to some extent.