期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers 被引量:7
1
作者 HE Li-li ZHONG Zhe-ke YANG Hui-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第3期704-712,共9页
The objective of this study was to evaluate the effects on chemical and microbiological properties of paddy soil of short-term biochar,straw,and chemical fertilizers compared with chemical fertilization alone.Five soi... The objective of this study was to evaluate the effects on chemical and microbiological properties of paddy soil of short-term biochar,straw,and chemical fertilizers compared with chemical fertilization alone.Five soil fertilization treatments were evaluated:regular chemical fertilizers(RF),straw+regular chemical fertilizers(SRF),straw biochar+regular chemical fertilizers(SCRF),bamboo biochar(BC)+regular chemical fertilizers(BCRF),and straw biochar+70%regular chemical fertilizers(SC+70%RF).Their effects were investigated after approximately 1.5 years.The soil p H and cation exchange capacity(CEC)were significantly higher in biochar-treated soils.The soil phosphorous(P)and potassium(K)contents increased with biochar application.The soil Colwell P content was significantly increased with the addition of straw biochar in the treatments of SCRF and SC+70%RF.The oxygen(O):carbon(C)ratio doubled in BC picked from the soil.This indicated that BC underwent a significant oxidation process in the soil.The denaturing gradient gel electrophoresis(DGGE)fingerprints of microbial communities differed among the treatments.Soils with added biochar had higher Shannon diversity and species richness indices than soils without biochars.The results suggest that biochar can improve soil fertility. 展开更多
关键词 BIOCHAR straw amendment FERTILIZER NUTRIENT soil bacteria denaturing gradient gel electrophoresis
下载PDF
Microbial Responses of Soil Fertility to Depth of Tillage and Incorporation of Straw in a Haplic Chernozem in Northeast China
2
作者 CHEN Xu SHI Chao +5 位作者 HAN Xiaozeng WANG Xiaohui GUO Zhenxi LU Xinchun ZOU Wenxiu YAN Jun 《Chinese Geographical Science》 SCIE CSCD 2023年第4期693-707,共15页
Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial a... Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial and fungal communities,we established a field experiment in a region in Northeast China with Haplic Chernozems using four treatments:conventional tillage(CT,tillage to a depth of 15 cm with no straw incorporation),straw incorporation with conventional tillage(SCT,tillage to a depth of 15 cm),inversion tillage(IT,tillage to a depth of 35 cm)and straw incorporation with inversion tillage(SIT,tillage to a depth of 35 cm).The soils were managed by inversion to a depth of 15 or 35 cm after harvest.The results show that soil organic carbon content was significantly higher and pH and bulk density were significantly lower in the 15–35 cm layer in IT and SIT than CT and SCT.Fungal abundance was higher with straw incorporation,but fungal diversity was lower in the 0–15 cm layer in SCT and SIT than in CT and IT.Path length in the bacterial network was shorter and connectivity was higher in CT+SCT than in IT+SIT,leading to a more complex ecosystem,and the fungal network had opposite patterns.The key taxa in the phylum Actinobacteriota and Ascomycota in the microbial networks changed dramatically at the genus level following inversion tillage with straw amendment,which may increase bacterial network resistance to environmental disturbances and unstable fungal networks,resulting in large changes in the fungal community involved in the decomposition of recalcitrant straw-derived C and the more efficient acquisition of limiting resources. 展开更多
关键词 soil microbiome inversion tillage conventional tillage straw amendment Haplic Chernozem Northeast China
下载PDF
Volatile organic compound emissions from straw-amended agricultural soils and their relations to bacterial communities:A laboratory study 被引量:1
3
作者 Juan Zhao Zhe Wang +6 位作者 Ting Wu Xinming Wang Wanhong Dai Yujie Zhang Ran Wang Yonggan Zhang Chengfei Shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期257-269,共13页
A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days unde... A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils. 展开更多
关键词 Volatile organic compounds(VOCs) Emission fluxes Microbial communities Correlations straw amendment Agricultural soils
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部